Skip to main content
Log in

Use of Magnetic Resonance Imaging in Petroleum Research: Potentialities and Prospects (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Potentialities of magnetic resonance imaging (MRI) in petroleum research are analyzed. Major attention is paid to technical features of the method as applied to oil extraction and preparation. Available published data are systematized. Four key directions of MRI, which undergo active development now, are distinguished: oil in a porous matrix; oil interfaces; destabilization of petroleum systems; transport of crude oils and petroleum systems. Key studies in this field are considered, essential points reflecting the MRI efficiency are presented, and the range of problems that can be solved using MRI, including prospects for further expansion of the application fields, is outlined. The possibilities of studying the morphological, structural, and dynamic aspects of the interaction of crude oils with the environment and the phase behavior of oils under the conditions of intense external actions are discussed. The review favors expansion of the experimental potential of specialists in the field of oil extraction, preparation, and refining, and also in the adjacent fields of physical and colloidal chemistry, chemistry of surface phenomena, and macromolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Karacan, R., Mukhtarov, S., Barış, İ., İşleyen, A., and Yardımcı, M.E., Energies, 2021, vol. 14, no. 10, article 2947. https://doi.org/10.3390/en14102947

  2. Makarov, A.A., Mitrova T.A., and Kulagin, V.A., Prognoz razvitiya energetiki mira i Rossii 2019 (Forecast of the Progress of Power Engineering in the World and in Russia 2019), Moscow: Skolkovo, 2019. ISBN 978-5-91438-028-8

  3. World Gross Electricity Production, by Source. 2019, IEA–Charts–Data & Statistics. https://www.iea.org/data-and-statistics/charts/world-gross-electricity-production-by-source-2019

  4. Ryabov, V.D., Khimiya nefti i gaza (Oil and Gas Chemistry), Moscow: Tekhnika, 2004.

  5. Safieva, R.Z., Khimiya nefti i gaza. Neftyanye dispersnye sistemy: sostav i svoistva (chast’ 1). Uchebnoe posobie (Oil and Gas Chemistry. Petroleum Disperse Systems: Composition and Properties (Part 1). Textbook), Moscow: Ross. Gos. Univ. Nefti i Gaza im. I.M. Gubkina, 2004.

  6. Hughey, C.A., Rodgers, R.P., and Marshall, A.G., Anal. Chem., 2002, vol. 74, no. 16, pp. 4145–4149. https://doi.org/10.1021/ac020146b

    Article  CAS  PubMed  Google Scholar 

  7. Martyanov, O.N., Larichev, Yu.V., Morozov, E.V., Trukhan, S.N., and Kazarian, S.G., Russ. Chem. Rev., 2017, vol. 86, no. 11, pp. 999–1023. https://doi.org/10.1070/RCR4742

    Article  CAS  Google Scholar 

  8. Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, pp. 993−1008. https://doi.org/10.1070/RC2011v080n10ABEH004174

    Article  CAS  Google Scholar 

  9. Kalabin, G.A., Kanitskaya, L.V., and Kushnarev, D.F., Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr’ya i produktov ego pererabotki (Quantitative NMR Spectroscopy of Natural Organic Feedstock and Products of Its Processing), Moscow: Khimiya, 2000.

  10. Silva, S.L., Silva, A.M.S., Ribeiro, J.C., Martins, F.G., da Silva, F.A., and Silva, C.M., Anal. Chim. Acta, 2011, vol. 707, nos. 1–2, pp. 18–37. https://doi.org/10.1016/j.aca.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Jones, M. and Taylor, S.E., Adv. Colloid Interface Sci., 2015, vol. 224, pp. 33–45. https://doi.org/10.1016/j.cis.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y., Principles of Magnetic Resonance Imaging: Physics Concepts, Pulse Sequences, & Biomedical Applications, Create Space, 2012.

  13. Koptyug, I.V., Prog. Nucl. Magn. Reson. Spectrosc., 2012, vol. 65, no. 8, pp. 1–65. https://doi.org/10.1016/j.pnmrs.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Lysova, A.A. and Koptyug, I.V., Chem. Soc. Rev., 2010, vol. 39, pp. 4585–4601. https://doi.org/10.1039/B919540H

    Article  CAS  PubMed  Google Scholar 

  15. Britton, M.M., Prog. Nucl. Magn. Reson. Spectrosc., 2017, vol. 101, no. 8, pp. 51–70. https://doi.org/10.1016/j.pnmrs.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  16. Callaghan, P.T., Principles of Nuclear Magnetic Resonance Microscopy, Clarendon, 1993.

  17. Hornak, J.P., The Basics of MRI. Interactive Learning Software, New York: Henrietta, 2012. http://www.cis.rit.edu/htbooks/mri/

  18. Günther, H., NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, Wiley–VCH, 2013, 3rd ed.

  19. Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L.C., Elnashaie, S.S., and Pendashteh, A., Sep. Purif. Technol., 2016, vol. 170, pp. 377–407. https://doi.org/10.1016/j.seppur.2016.06.026

    Article  CAS  Google Scholar 

  20. Chertenkov, M.V., Mamedov, E.A., and Aubakirov, A.R., Metody povysheniya nefteotdachi plastov i izvlecheniya ostatochnoi nefti (Methods for Increasing the Oil Recovery from Strata and for Recovering Remaining Oil), Moscow: Ross. Gos. Univ. Nefti i Gaza, 2018.

  21. Mitchell, J., Chandrasekera, T.C., Holland, D.J., Gladden, L.F., and Fordham, E.J., Phys. Rep., 2013, vol. 526, no. 3, pp. 165–225. https://doi.org/10.1016/j.physrep.2013.01.003

    Article  CAS  Google Scholar 

  22. Nabipour, M., Escrochi, M., Ayatollahi, S., Boukadi, F., Wadhahi, M., Maamari, R., and Bemani, A., J. Petrol. Sci. Eng., 2007, vol. 55, nos. 1–2, pp. 74–82. https://doi.org/10.1016/j.petrol.2006.04.013

    Article  CAS  Google Scholar 

  23. Green, D.W. and Willhite, G.P., Enhanced Oil Recovery, Richardson, TX: Society of Petroleum Engineers, 1998.

  24. Alvarado, V. and Manrique, E., Energies, 2010, vol. 3, no. 9, pp. 1529–1575. https://doi.org/10.3390/en3091529

    Article  Google Scholar 

  25. Mitchell, J., Staniland, J., Chassagne, R., Mogensen, K., Frank, S., and Fordham, E.J., J. Petrol. Sci. Eng., 2013, vol. 108, no. 8, pp. 14–21. https://doi.org/10.1016/j.petrol.2013.04.008

    Article  CAS  Google Scholar 

  26. Wei, B., Liu, J., Zhang, X., Xiang, H., Zou, P., Cao, J., and Bai, M., J. Petrol. Sci. Eng., 2020, vol. 190, no. 7, article 107102. https://doi.org/10.1016/j.petrol.2020.107102

  27. Ramskill, N.P., Sederman, A.J., Mantle, M.D., Appel, M., de Jong, H., and Gladden, L.F., Transp. Porous Media, 2018, vol. 121, pp. 15–35. https://doi.org/10.1007/s11242-017-0945-6

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Di, Q., Hua, S., Jia, X., Zhou, X., Wang, W., and Chen, H., Colloids Surf. A, 2020, vol. 607, article 125336. https://doi.org/10.1016/j.colsurfa.2020.125336

  29. Li, M., Romero-Zerón, L., Marica, F., and Balcom, B.J., Energy Fuels, 2017, vol. 31, no. 5, pp. 4904–4914. https://doi.org/10.1021/acs.energyfuels.7b00030

    Article  CAS  Google Scholar 

  30. Zhou, R., Zhang, D., Tao, J., Wie, J., Zhao, X., Zhang, A., Zhou, X., and Shi, X., Energy Sci. Eng., 2022, vol. 10, pp. 2527–2539. https://doi.org/10.1002/ese3.1206

    Article  CAS  Google Scholar 

  31. Tan, Y., Li, Q., Xu, L., Ghaffar, A., Zhou, X., and Li, P., Fuel, 2022, vol. 328, article 125256. https://doi.org/10.1016/j.fuel.2022.125256

  32. Wang, S., Jiang, L., Cheng, Z., Liu, Y., Zhao, J., and Song, Y., Energy, 2021, vol. 217, article 119433. https://doi.org/10.1016/j.energy.2020.119433

  33. Zhao, Y., Song, Y., Liu, Yu., Jiang, L., and Zhu, N., Petrol. Sci., 2011, vol. 8, pp. 183–193. https://doi.org/10.1007/s12182-011-0133-1

    Article  CAS  Google Scholar 

  34. Zhao, Y., Song, Y., Liu, Y., Liang, H., and Dou, B., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 4707–4715. https://doi.org/10.1021/ie1013019

    Article  CAS  Google Scholar 

  35. Cai, M., Su, Y., Hao, Y., Guo, Y., Elsworth, D., Li, L., Li, D., and Li, X., Fuel, 2021, vol. 305, article 121606. https://doi.org/10.1016/j.fuel.2021.121606

  36. Song, Y., Zhu, N., Zhao, Y., Liu, Yu., Jiang, L., and Wang, T., Phys. Fluids, 2013, vol. 25, article 053301. https://doi.org/10.1063/1.4803663

  37. Song, Y., Yang, W., Wang, D., Yang, M., Jiang, L., Liu, Yu., Zhao, Y., Dou, B., and Wang, Zh., J. Appl. Phys., 2014, vol. 115, article 244904. https://doi.org/10.1063/1.4885057

  38. Li, M., Lim, V.W.S., Al Ghafri, S.Z.S., Ling, N., Adebayo, A.R., May, E.F., and Johns, M.L., J. Petrol. Sci. Eng., 2022, vol. 214, article 110515. https://doi.org/10.1016/j.petrol.2022.110515

  39. Hurlimann, M.D., Flaum, M., Venkataramanan, L., Flaum, C., Freedman, R., and Hirasaki, G.J., Magn. Reson. Imaging, 2003, vol. 21, pp. 305–310. https://doi.org/10.1016/S0730-725X(03)00159-0

    Article  CAS  PubMed  Google Scholar 

  40. Yang, P., Guo, H., and Yang, D., Energy Fuels, 2013, vol. 27, pp. 5750−5756. https://doi.org/10.1021/ef400631h

    Article  CAS  Google Scholar 

  41. Zhou, B., Yang, P., Ferrante, G., Pasin, M., Steele, R., Bortolotti, V., and Korb, J.-P., Energy Fuels, 2019, vol. 33, pp. 1016−1022. https://doi.org/10.1021/acs.energyfuels.8b04023

    Article  CAS  Google Scholar 

  42. Song, Y.-Q. and Kausik, R., Prog. Nucl. Magn. Reson. Spectrosc., 2019, vols. 112–113, pp. 17–33. https://doi.org/10.1016/j.pnmrs.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  43. Fingas, M. and Hollebone, B.P., Handbook of Oil Spill Science and Technology, Fingas, M., Ed., Wiley, 2015, pp. 271–284.

  44. Collins, R.E., Bluhm, B., Gradinger, R., Eicken, H., Dilliplaine, K., and Oggier, M., Final Report, OCS Study BOEM 2017-087, December 2017. https://www.boem.gov/sites/default/files/boem-newsroom/Library/Publications/2017/BOEM-2017-087-CMI-Collins-M14AC00015.FinalReport.pdf

  45. Reeves, A.D. and Chudek, J.A., Magn. Reson. Imaging, 2007, vol. 25, no. 1, pp. 136–143. https://doi.org/10.1016/j.mri.2006.10.014

    Article  PubMed  Google Scholar 

  46. Eicken, H., Bock, C., Wittig, R., Miller, H., and Poertner, H.O., Cold Regions Sci. Technol., 2000, vol. 31, no. 3, pp. 207–225. https://doi.org/10.1016/S0165-232X(00)00016-1

    Article  Google Scholar 

  47. Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T., Cold Regions Sci. Technol., 2020, vol. 170, article 102956. https://doi.org/10.1016/j.coldregions.2019.102956

  48. Morozov, E.V., Bouznik, V.M., and Yaroslavov, A.A., Proc. 26th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, 2021, pp. 1–11. https://www.poac.com/PapersOnline.html

  49. Morozov, E.V., Voronin, A.S., Kniga, S.V., and Buznik, V.M., Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 1, pp. 217–224. https://doi.org/10.1134/S2075113322010270

    Article  Google Scholar 

  50. Morozov, E.V., Bol’basov, E.N., Goreninskii, S.I., Yurkov, G.Yu., and Buznik, V.M., Polim. Mater. Tekhnol., 2020, vol. 6, no. 4, pp. 20–29. https://doi.org/10.32864/polymmattech-2020-6-4-20-29

    Article  Google Scholar 

  51. Erasmus, L.J., Hurter, D., Naudé, M., Kritzinger, H.G., and Acho, S., South Afr. J. Radiol., 2004, vol. 8, no. 2, pp. 13–17. https://doi.org/10.4102/sajr.v8i2.127

    Article  Google Scholar 

  52. Chala, G.T., Sulaiman, S.A., Japper-Jaafar, A., Abdullah, W.A.K.W., and Mokhtar, M.M.M., Int. J. Therm. Sci., 2014, vol. 86, no. 12, pp. 41–47. https://doi.org/10.1016/j.ijthermalsci.2014.06.034

    Article  Google Scholar 

  53. Chala, G.T., Sulaiman, S.A., Japper-Jaafar, A., and Abdullah, W.A.K.W., J. Mech. Eng. Sci., 2015, vol. 9, no. 12, pp. 1587–1594. https://doi.org/10.15282/jmes.9.2015.6.0154

    Article  Google Scholar 

  54. Chala, G.T., Sulaiman, S.A., Japper-Jaafar, A., and Abdullah, W.A.K.W., Int. J. Multiphase Flow, 2015, vol. 77, no. 12, pp. 187–195. https://doi.org/10.1016/j.ijmultiphaseflow.2015.08.016

    Article  CAS  Google Scholar 

  55. Chala, G.T., Sulaiman, S.A., Japper-Jaafar, A., and Abdullah, W.A.K.W., Chem. Eng. Commun., 2020, vol. 207, no. 10, pp. 1403–1414. https://doi.org/10.1080/00986445.2019.1655403

    Article  CAS  Google Scholar 

  56. Miknis, F.P., Pauli, A.T., Beemer, A., and Wilde, B., Fuel, 2005, vol. 84, no. 9, pp. 1041–1051. https://doi.org/10.1016/j.fuel.2004.12.019

    Article  CAS  Google Scholar 

  57. Lakshmanan, S., Maru, W.A., Holland, D.J., Mantle, M.D., and Sederman, A.J., Flow Meas. Instrum., 2017, vol. 53, no. 3, pp. 161–171. https://doi.org/10.1016/j.flowmeasinst.2016.04.001

    Article  Google Scholar 

  58. Herrera, D., Chevalier, T., Fleury, M., and Dalmazzone, C., Magn. Reson. Imaging, 2021, vol. 83, no. 11, pp. 160–168. https://doi.org/10.1016/j.mri.2021.08.002

    Article  CAS  PubMed  Google Scholar 

  59. Herrera, D., Chevalier, T., Frot, D., Barré, L., Drelich, A., Pezron, I., and Dalmazzone, C., J. Colloid Interface Sci., 2022, vol. 609, no. 3, pp. 200–211. https://doi.org/10.1016/j.jcis.2021.12.011

    Article  CAS  PubMed  Google Scholar 

  60. Opedal, N.-v.-d.-T., Sørland, G., and Sjoblom, J., Energy Fuels, 2010, vol. 24, no. 6, pp. 3628–3633. https://doi.org/10.1021/ef100268x

    Article  CAS  Google Scholar 

  61. Johns, M.L. and Hollingsworth, K.G., Prog. Nucl. Magn. Reson. Spectrosc., 2007, vol. 50, nos. 2–3, pp. 51–70. https://doi.org/10.1016/j.pnmrs.2006.11.001

    Article  CAS  Google Scholar 

  62. Mullins, O.C., Annu. Rev. Anal. Chem., 2011, vol. 4, pp. 393–418. https://doi.org/10.1146/annurev-anchem-061010-113849

    Article  CAS  Google Scholar 

  63. Gordadze, G.N., Uglevodorody v neftyanoi geokhimii. Teoriya i praktika (Hydrocarbons in Petroleum Geochemistry. Theory and Practice), Moscow: Ross. Gos. Univ. Nefti i Gaza im. I.M. Gubkina, 2015.

  64. Miknis, F.P., Pauli, A.T., Michon, L.C., and Netzel, D.A., Fuel, 1998, vol. 77, no. 5, pp. 399–405. https://doi.org/10.1016/S0016-2361(98)80030-6

    Article  CAS  Google Scholar 

  65. Morozov, E.V. and Martyanov, O.N., Appl. Magn. Reson., 2016, vol. 47, pp. 223–235. https://doi.org/10.1007/s00723-015-0741-9

    Article  CAS  Google Scholar 

  66. Gabrienko, A.A., Morozov, E.V., Subramani, V., Martyanov, O.N., and Kazarian, S.G., J. Phys. Chem. C, 2015, vol. 119, pp. 2646–2660. https://pubs.acs.org/doi/pdf/10.1021/jp511891f

    Article  CAS  Google Scholar 

  67. Morozov, E.V. and Martyanov, O.N., Energy Fuels, 2017, vol. 31, no. 10, pp. 10639–10647. https://doi.org/10.1021/acs.energyfuels.7b01755

    Article  CAS  Google Scholar 

  68. Syunyaev, Z.I., Safieva, R.Z., and Syunyaev, R.Z., Neftyanye dispersnye sistemy (Petroleum Disperse Systems), Moscow: Khimiya, 1991.

  69. Sarica, C. and Panacharoensawad, E., Energy Fuels, 2012, vol. 26, no. 7, pp. 3968–3978. https://doi.org/10.1021/ef300164q

    Article  CAS  Google Scholar 

  70. Morozov, E.V., Falaleev, O.V., and Martyanov, O.N., Energy Fuels, 2016, vol. 30, no. 11, pp. 9003−9013. https://doi.org/10.1021/acs.energyfuels.6b01535

    Article  CAS  Google Scholar 

  71. Fayazi, A., Kryuchkov, S., and Kantzas, A., Energy Fuels, 2017, vol. 31, no. 2, pp. 1226−1234. https://doi.org/10.1021/acs.energyfuels.6b02464

    Article  CAS  Google Scholar 

  72. Fayazi, A., Kryuchkov, S., and Kantzas, A., Chem. Eng. Res. Des., 2019, vol. 142, no. 2, pp. 121–132. https://doi.org/10.1016/j.cherd.2018.12.001

    Article  CAS  Google Scholar 

  73. Fayazi, A. and Kantzas, A., Ind. Eng. Chem. Res., 2019, vol. 58, no. 23, pp. 10031−10043. https://doi.org/10.1021/acs.iecr.9b01510

    Article  CAS  Google Scholar 

  74. Song, Y., Hao, M., Liu, Y., Zhao, Y., Sua, B., and Jiang, L., RSC Adv., 2014, vol. 4, pp. 50180–50187. https://doi.org/10.1039/c4ra07766k

    Article  CAS  Google Scholar 

  75. Callaghan, P.T., Rep. Prog. Phys., 1999, vol. 62, no. 4, pp. 599–670. https://doi.org/10.1088/0034-4885/62/4/003

    Article  CAS  Google Scholar 

  76. Andrade, D.E.V., Ferrari, M., and Coussot, P., J. Non-Newton. Fluid Mech., 2020, vol. 279, no. 5, article 104261. https://doi.org/10.1016/j.jnnfm.2020.104261

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-13-00410, http://rscf.ru/project/22-13-00410/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Morozov or D. A. Sandzhieva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.V., Sandzhieva, D.A., Dedov, A.G. et al. Use of Magnetic Resonance Imaging in Petroleum Research: Potentialities and Prospects (A Review). Pet. Chem. 63, 52–66 (2023). https://doi.org/10.1134/S0965544123020196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123020196

Keywords:

Navigation