Skip to main content
Log in

Effects of Grain Size on the Activity of H-MFI Zeolites in Liquid-Phase Condensation of Propene with Formaldehyde

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the activity of H-MFI catalysts modified by the top-down method in the liquid-phase Prins reaction between propene and formaldehyde. The physicochemical characterization of the catalyst demonstrated that grinding the catalyst reduces the specific surface area and affects the micropore to mesopore ratio in the samples. Reducing the grain size was found to increase the initial substrate consumption rate and reduce the diffusion limitations in the system. At the same time, grinding shifts the product composition towards a higher proportion of byproducts. An assessment of the kinetic curves enabled the researchers to propose a number of equations that accurately reflect catalyst deactivation. Both the reaction rate and deactivation rate vary directly with the zeolite dispersion, while the deactivation of the sample is more sensitive to the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Plate, N.A. and Slivinskii, E.V., Fundamentals of Chemistry and Technology of Monomers, Nauka/ Interperiodika Publishing, 2002.

  2. Dahlmann, M. and Grub, J., Butadiene, Weinheim: WileyVCH, 2011.

  3. https://www.statista.com/statistics/1067436/global-butadiene-production-capacity/

  4. White, W.C., Chem. Biol. Interact., 2007, vol. 166, nos. 1–3, pp. 10–14. https://doi.org/10.1016/j.cbi.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  5. Bedenko, S.P., Dement’ev, K.I., Tret’yakov, V.F., and Maksimov, A.L., Petrol. Chem., 2020, vol. 60, no. 7, pp. 723–730. https://doi.org/10.1134/S0965544120070026

    Article  CAS  Google Scholar 

  6. Cavani, F., Albonetti, S., Basile, F., and Gandini, A., Chemicals and Fuels from Bio-Based Building Blocks, Weinheim: Wiley-VCH, 2016.

  7. Zacharopoulou, V. and Lemonidou, A.A., Catalysts, 2018, vol. 8, no. 1, p. 2. https://doi.org/10.3390/catal8010002

    Article  CAS  Google Scholar 

  8. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem., 2014, vol. 54, no. 4, pp. 245–269. https://doi.org/10.1134/S0965544114040057

    Article  CAS  Google Scholar 

  9. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., and De Weireld, G., Renew. Energy. Elsevier Ltd., 2020, vol. 146, pp. 1192–1203. https://doi.org/10.1016/j.renene.2019.07.010

    Article  CAS  Google Scholar 

  10. Sheldon, R.A., Arends, I., and Hanefeld, U., Green Chemistry and Catalysis, Weinheim: Wiley–VCH, 2007.

  11. Dumitriu, E., Gongescu, D., and Hulea, V., Stud. Surf. Sci. Catal., 1993, vol. 78, pp. 669–676.

    Article  CAS  Google Scholar 

  12. Dumitriu, E., Hulea, V., Hulea, T., Chelaru, C., and Kaliaguine, S., Stud. Surf. Sci. Catal., 1994, vol. 84, pp. 1997–2004.

    Article  CAS  Google Scholar 

  13. Dumitriu, E., Trong On, D., and Kaliaguine, S., J. Catal., 1997, vol. 170, no. 1, pp. 150–160. https://doi.org/10.1006/jcat.1997.1745

    Article  CAS  Google Scholar 

  14. Dumitriu, E., Hulea, V., Fechete, I., Catrinescu, C., Auroux, A., Lacaze, J.-F., and Guimon, C., Appl. Catal. A: General, 1999, vol. 181, no. 1, pp. 15–28. https://doi.org/10.1016/S0926-860X(98)00366-4

    Article  CAS  Google Scholar 

  15. Vasiliadou, E.S., Gould, N.S., and Lobo, R.F., ChemCatChem., 2017, vol. 9, no. 23, pp. 4417–4425. https://doi.org/10.1002/cctc.201701315

    Article  CAS  Google Scholar 

  16. Vasiliadou, E.S., Li, S., Caratzoulas, S., and Lobo, R.F., Catal. Sci. Technol. Royal Soc. Chem., 2018, vol. 8, no. 22, pp. 5794–5806. https://doi.org/10.1039/C8CY01667D

    Article  CAS  Google Scholar 

  17. Bedenko, S.P., Kozhevnikov, A.A., Demen’tev, K.I., Tret’yakov, V.F., and Maximov, A.L., Catal. Commun., 2020, vol. 138, p. 105965. https://doi.org/10.1016/j.catcom.2020.105965

    Article  CAS  Google Scholar 

  18. Bedenko, S.P., Dement’ev, K.I., and Tret’yakov, V.F., Catalysts, 2021, vol. 11, no. 10, p. 1181. https://doi.org/10.3390/catal11101181

    Article  CAS  Google Scholar 

  19. Bedenko, S.P., Dement’ev, K.I., and Tret’yakov, V.F., Petrol. Chem ., 2022, vol. 62, no. 7, pp. 768–778. https://doi.org/10.1134/S0965544122050073

    Article  CAS  Google Scholar 

  20. Eckert, C.A., Knutson, B.L., and Debenedetti, P.G., Nature, 1996, vol. 383, no. 6598, pp. 313–318. https://doi.org/10.1038/383313a0

    Article  CAS  Google Scholar 

  21. Bohács, K., Kristály, F., and Mucsi, G., J. Mater. Sci., 2018, vol. 53, no. 19, pp. 13779–13789. https://doi.org/10.1007/s10853-018-2502-2

    Article  CAS  Google Scholar 

  22. Ivanova, I.I. and Knyazeva, E.E., Chem. Soc. Rev., 2013, vol. 42, no. 9, pp. 3671–3688. https://doi.org/10.1039/c2cs35341e

    Article  CAS  PubMed  Google Scholar 

  23. Kuznetsov, P.S., Dementiev, K.I., Palankoev, T.A., Kalmykova, D.S., Malyavin, V.V., Sagaradze, A.D., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 6, pp. 649–662. https://doi.org/10.1134/S0965544121050182

    Article  CAS  Google Scholar 

  24. Rodionova, L.I., Knyazeva, E.E., Konnov, S.V., and Ivanova, I.I., Petrol. Chem., 2019, vol. 59, no. 4, pp. 455–470. https://doi.org/10.1134/S0965544119040133

    Article  CAS  Google Scholar 

  25. Palčić, A. and Catizzone, E., Curr. Opin. Green Sustain. Chem., 2021, vol. 27, pp. 1–8. https://doi.org/10.1016/j.cogsc.2020.100393

    Article  CAS  Google Scholar 

  26. Dement’ev, K.I., Palankoev, T.A., Kuznetsov, P.S., Abramova, D.S., Romazanova, D.A., Makhin, D.Yu., and Maksimov, A.L., Petrol. Chem., 2020, vol. 60, no. 1, pp. 30–38. https://doi.org/10.1134/S0965544120010065

    Article  Google Scholar 

  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  28. Akçay, K., Sirkecioǧlu, A., Tatlier, M., Savaşçi, Ö.T., and Erdem-Şenatalar, A., Powder Technol., 2004, vol. 142, nos. 2–3, pp. 121–128. https://doi.org/10.1016/j.powtec.2004.03.012

    Article  CAS  Google Scholar 

  29. Wakihara, T., Sato, K., Inagaki, S., Tatami, J., Komeya, K., Meguro, T., and Kubota, Y., ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 10, pp. 2715–2718. https://doi.org/10.1021/am100642w

    Article  CAS  Google Scholar 

  30. Wakihara, T., Ichikawa, R., Tatami, J., Endo, A., Yoshida, K., Sasaki, Y., Komeya, K., and Meguro, T., Cryst. Growth Des., 2011, vol. 11, no. 4, pp. 955–958. https://doi.org/10.1021/cg2001656

    Article  CAS  Google Scholar 

  31. Saepurahman, H.R., Mater. Chem. Phys. Elsevier, 2018, vol. 220, no. 7, pp. 322–330. https://doi.org/10.1016/j.matchemphys.2018.08.080

    Article  CAS  Google Scholar 

  32. Groen, J.C., Peffer, L.A.A., and Pérez-Ramírez, J., Micropor. Mesopor. Mater., 2003, vol. 60, nos. 1–3, pp. 1–17. https://doi.org/10.1016/S1387-1811(03)00339-1

    Article  CAS  Google Scholar 

  33. Groen, J.C. and Pérez-Ramírez, J., Appl. Catal. A: General, 2004, vol. 268, pp. 121–125.

    Article  CAS  Google Scholar 

  34. Smit, B. and Maesen, T.L.M., Nature, 2008, vol. 451, no. 7179, pp. 671–678. https://doi.org/10.1038/nature06552

    Article  CAS  PubMed  Google Scholar 

  35. Wojciechowski, B.W., Catal. Rev., 1974, vol. 9, no. 1, pp. 79–113.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using equipment of the Shared Research Center “Analytical center of deep oil processing and petrochemistry of TIPS RAS”. The authors are sincerely grateful to colleagues from this Center, and especially to Dr. Levin, PhD (Phys.-Math.), for his cooperation in XRD examination, and to Dr. Sadovnikov, PhD (Chem.), for his cooperation in SEM examination of the samples.

Funding

The reported study was funded by RFBR (project number 20-33-90112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Bedenko.

Ethics declarations

K.I. Dement’ev, a co-author, is a Deputy Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedenko, S.P., Mukusheva, A.A., Malyavin, V.V. et al. Effects of Grain Size on the Activity of H-MFI Zeolites in Liquid-Phase Condensation of Propene with Formaldehyde. Pet. Chem. 63, 268–276 (2023). https://doi.org/10.1134/S0965544123010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123010115

Keywords:

Navigation