Skip to main content
Log in

Advances in the Chemistry of Unsaturated Adamantane Derivatives (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review discusses various issues related to the synthesis of unsaturated adamantane derivatives, to the development of novel methods for their preparation, and to the polymerization reactions. Furthermore, we appraised the potential of quantum-chemical calculations for investigating the electronic structure of adamantane derivatives and for elucidating the mechanisms for their chemical and catalytic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Reactions that have equal numbers of conventional two-center bonds and equal numbers of lone pairs of each type in the reagents and products.

  2. Reactions that have equal numbers of chemical bonds of each type.

REFERENCES

  1. Bagrii, E.I., Adamantany: poluchenie, svoistva, primenenie (Adamantanes: Obtaining, Properties, Application), Moscow: Nauka, 1989.

  2. Butov, G.M., Mohov, V.M., Parshin, G.Yu., and Kamneva, E.A., Izv. Volgograd. Gos. Tekhn. Univ., 2011, vol. 75, no. 2, pp. 6–26.

    Google Scholar 

  3. Tae Eunju Lee, Zhu Zhendong, Platz Matthew, S., J. Phys. Chem. A, 2001, vol. 105, no. 15, pp. 3803–3807. https://doi.org/10.1021/jp003682l

    Article  CAS  Google Scholar 

  4. Nekhaev, A.I., Bagrii, E.I., Kuzmichev, A.V., Ageev, V.P., Konov, V.I., Mikaya, A.I., and Zaikin, V.G., Mendeleev Commun., 1991, vol. 1, no. 1, pp. 18–19. https://doi.org/10.1070/MC1991v001n01ABEH000011

    Article  Google Scholar 

  5. Nekhaev, A.I. and Bagrii, E.I., Russ. Chem. Bull., 2002, vol. 51, no. 2, pp. 364–365. https://doi.org/10.1023/A:1015488517738

    Article  CAS  Google Scholar 

  6. Nekhaev, A.I., Borisov, R.S., Zaikin, V.G., and Bagrii, E.I., Petrol. Chem., 2002, vol. 42, no. 5, pp. 310–313

    Google Scholar 

  7. Mokhov, V.M., Candidate Sci. (Chem.) Dissertation, Volgograd, 1998.

  8. D’yakonov, S.V., Candidate Sci. (Chem.) Dissertation, Volgograd, 2009.

  9. Mokhov, V.M., Butov, G.M., and D’yakonov, S.V., Izv. Volgograd. Gos. Tekhn. Univ., 2012, vol. 92, no. 5, pp. 6–23.

    Google Scholar 

  10. Creary, X., Burtch, E.A., and Jiang, Z., J. Org. Chem., 2003, vol. 68, no. 3, pp. 1117–1127. https://doi.org/10.1021/jo026468x

    Article  CAS  PubMed  Google Scholar 

  11. Dvorko, G.F., Vasil’kevich, A.I., Mikhal’chuk, K.V., and Koshcii, I.V., Russ. J. Org. Chem., 2007, vol. 43, pp. 188–191. https://doi.org/10.1134/S1070428007020066

    Article  CAS  Google Scholar 

  12. Aïssa, Ch., J. Org. Chem., 2006, vol. 71, no. 1, pp. 360–363. https://doi.org/10.1021/jo051693a

    Article  CAS  PubMed  Google Scholar 

  13. Popov, Yu.V., Mohov, V.M., Tankabekyan, N.A., and Uzakov, E.Yu., Izv. Volgograd. Gos. Tekhn. Univ., 2011, no. 2 (75), pp. 29–32.

    Google Scholar 

  14. Novakov, I.A., Orlinson, B.S., Savel’ev, E.N., Potaenkova, E.A., and Plotnikova, D.K., Izv. Volgograd. Gos. Tekhn. Univ., 2014, no. 22 (149), pp. 8–10.

    Google Scholar 

  15. Khusnutdinov, R.I. and Shchadneva, N.A., Russ. Chem. Rev., 2019, vol. 88, no. 8, pp. 800–836. https://doi.org/10.1070/RCR4881

    Article  CAS  Google Scholar 

  16. Ishizone, T. and Goseki, R., Polym. J., 2018, vol. 50, pp. 805–819. https://doi.org/10.1038/s41428-018-0081-3

    Article  CAS  Google Scholar 

  17. Popov, Yu.V., Mohov, V.M., and Distel’, A.I., Izv. Volgograd. Gos. Tekhn. Univ., 2005, no. 1, pp. 42–45.

    Google Scholar 

  18. Solov’ev, V.N., Bagrii, E.I., Nosakova, S.M., Liberov, L.G., and Sanin, P.I., USSR Author’s Certificates no. 789472, 1980.

  19. Wright, J.A., Gaunt, M.J. and Spencer, J.B., Chemistry – A Eur. J., 2006, vol. 12, no. 3, pp. 949–955. https://doi.org/10.1002/chem.200400644

    Article  CAS  Google Scholar 

  20. Trofimov, B.A., Schmidt, E.Yu., Zorina, N.V., Senotrusova, E.Yu., Protsuk, N.I., Ushakov, I.A., Mikhaleva, A.I., Méallet-Renault, R., and Clavier, G., Tetrahedron Lett., 2008, vol. 49, no. 28, pp. 4362–4365. https://doi.org/10.1016/j.tetlet.2008.05.023

    Article  CAS  Google Scholar 

  21. Fokin, A.A., Butova, E.D., Barabash, A.V., Huu, N.N., Tkachenko, B.A., Fokina, N.A., and Schreiner, P.R., Synth. Commun., 2013, vol. 43, no. 13, pp. 1772–1777. https://doi.org/10.1080/00397911.2012.667491

    Article  CAS  Google Scholar 

  22. Bräse, S., Waegell, B., and de Meijere, A., Synthesis, 1998, no. 2, pp. 148–152. https://doi.org/10.1055/s-1998-2013

    Article  Google Scholar 

  23. Huang, H.-M., Bellotti, P., Pflüger, P.M., Schwarz, J.L., Heidrich, B., and Glorius, F., J. Am. Chem. Soc., 2020, vol. 142, no. 22, pp. 10173–10183. https://doi.org/10.1021/jacs.0c03239

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda, Y., Nakamura, T., Yorimitsu, H., and Oshima, K., J. Am. Chem. Soc., 2002, vol. 124, no. 23, pp. 6514– 6515. https://doi.org/10.1021/ja026296l

    Article  CAS  PubMed  Google Scholar 

  25. Cao, H., Jiang, H., Feng, H., Kwan, J.M.C., Liu, X., and Wu, J., J. Am. Chem. Soc., 2018, vol. 140, no. 47, pp. 16360–16367. https://doi.org/10.1021/jacs.8b11218

    Article  CAS  PubMed  Google Scholar 

  26. Rouquet, G., Robert, F., Méreau, R., Castet, F., and Landais, Y., Chem. Eur. J., 2011, vol. 17, pp. 13904– 13911. https://doi.org/10.1002/chem.201101842

    Article  CAS  PubMed  Google Scholar 

  27. Chaambi, A., Kurtay, G., Abderrahim, R., Robert, F., and Landais, Y., Helv. Chim. Acta, 2019, vol. 102, no. 8, pp. e1900140. https://doi.org/10.1002/hlca.201900140

  28. Fokin, A.A., Kushko, A.O., Kirij, A.V., Yurchenko, A.G., and Schleyer, P.v.R., J. Org. Chem., 2000, vol. 65, no. 10, pp. 2984–2995. https://doi.org/10.1021/jo991672e

    Article  CAS  PubMed  Google Scholar 

  29. Danilin, A.A., Purygin, P.P., Makarova, N.V., Zemtsova, M.N., and Moiseev, I.K., Russ. J. Org. Chem., 2001, vol. 37, no. 1, pp. 56–61. https://doi.org/10.1023/A:1012321316491

    Article  CAS  Google Scholar 

  30. Samokhina, M.G., Candidate Sci. (Chem.) Dissertation, Ufa, 2003.

  31. Kozhushkov, S.I., Yufit, D.S., Boese, R., Bläser, D., Schreiner, P.R., and de Meijer, A., Eur. J. Org. Chem., 2005, no. 7, pp. 1409–1415. https://doi.org/10.1002/ejoc.200400731

    Article  CAS  Google Scholar 

  32. Khusnutdinov, R.I., Schchadneva, N.A., Malikov, A.I., and Dzhemilev, U.M., Petrol. Chem., 2006, vol. 46, no. 3, pp. 159–163. https://doi.org/10.1134/S0965544106030030

    Article  Google Scholar 

  33. Harmana, D.G. and Blanksby, S.J., Org. Biomol. Chem., 2007, vol. 5, no. 21, pp. 3495–3503. https://doi.org/10.1039/B711156H

    Article  Google Scholar 

  34. Fokin, A.A., Butova, E.D., Chernish, L.V., Fokina, N.A., Dahl, J.E.P., Carlson, R.M.K., and Schreiner, P.R., Org. Lett., 2007, vol. 9, no. 13, pp. 2541–2544. https://doi.org/10.1021/ol070920n

    Article  CAS  PubMed  Google Scholar 

  35. Klaić, L., Alešković, M., Veljković, J., and MlinarićMajerski, K., J. Phys. Org. Chem., 2008, vol. 21, pp. 299–305. https://doi.org/10.1002/poc.1319

    Article  CAS  Google Scholar 

  36. Luc, G. and Vroni, H., Tetrahedron, 1998, vol. 54, no. 39, pp. 11899–11906. https://doi.org/10.1016/S0040-4020(98)83047-0

    Article  Google Scholar 

  37. Jasiński, M., Mlostoń, G., Stolarski, M., Costa, W., Domínguez, M., and Reissig, H.-U., Chem. Asian J., 2014, vol. 9, no. 9, pp. 2641–2648. https://doi.org/10.1002/asia.201402547

    Article  CAS  PubMed  Google Scholar 

  38. Leonova, M.V., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2017, vol. 53, pp. 326–334. https://doi.org/10.1134/S1070428017030034

    Article  CAS  Google Scholar 

  39. Savel’eva, S.A., Leonova, M.V., Baimuratov, M.R., Klimochkin, Yu.N., Russ. J. Org. Chem., 2018, vol. 54, no. 7, pp. 996–1002. https://doi.org/10.1134/S1070428018070047

    Article  Google Scholar 

  40. Yasuyuki, E., Tomohiro, Y., Kiminori, O., Tomoharu, S., and Shigeru, O., J. Med. Chem., 2005, vol. 48, no. 12, pp. 3941–3944. https://doi.org/10.1021/jm050195r

    Article  CAS  Google Scholar 

  41. Shadrikova, V.A., Golovin, E.V., Kuznetsova, E.A., Rostova, M.Y., and Klimochkin, Y.N., Russ. J. Org. Chem., 2016, vol. 52, no. 10, pp. 1452–1462. https://doi.org/10.1134/S1070428016100146

    Article  CAS  Google Scholar 

  42. Shin, K., Kaori, K., Kiyotaka, M., and Toshihiro, M., Org. Lett., 2016, vol. 18, no. 24, pp. 6516–6519. https://doi.org/10.1021/acs.orglett.6b03586

    Article  CAS  Google Scholar 

  43. Qin, T., Cornella, J., Li Chao, Malins, L.R., Edwards, J.T., Kawamura, Sh., Maxwell, B.D., Eastgate, M.D., and Baran, P.S., Science, 2016, vol. 352, no. 6287, pp. 801–805. https://doi.org/10.1126/science.aaf6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, J.-T., Jang, Y.-J., Shih, Y.-K., Hu, S.-R., Chu, C.-M., and Yao, C.-F., J. Org. Chem 2001, vol. 66, no. 18, pp. 6021–6028. https://doi.org/10.1021/jo010213m

  45. Muthyala, R.S., Sheng, S., Carlson, K.E., Katzenellenbogen, B.S., and Katzenellenbogen, J.A., J. Med. Chem., 2003, vol. 46, no. 9, pp. 1589–1602. https://doi.org/10.1021/jm0204800

    Article  CAS  PubMed  Google Scholar 

  46. Min, J., Guillen, V.S., Sharma, A., Zhao, Y., Ziegler, Y., Gong, P., Mayne, C.G., Srinivasan, S., Kim, S.H., Carlson, K.E., Nettles, K.W., Katzenellenbogen, B.S., and Katzenellenbogen, J.A., J. Med. Chem., 2017, vol. 60, no. 14, pp. 6321–6336. https://doi.org/10.1021/acs.jmedchem.7b00585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyashita, K., Minagawa, M., Ueda, Y., Tada, Y., Hoshino, N., and Imanishi, T., Tetrahedron, 2001, vol. 57, no. 16, pp. 3361–3367. https://doi.org/10.1016/S0040-4020(01)00216-2

    Article  CAS  Google Scholar 

  48. Timothée, C., Margherita, Z., Alessio, R., Nadeem, S., Fabio, J., and Daniele, L., Science, 2020, vol. 367, no. 6481, pp. 1021–1026. https://doi.org/10.1126/science.aba2419

    Article  CAS  Google Scholar 

  49. Cao, H., Kuang, Y., Shi, X., Wong, K.L., Tan, B.B., Kwan, J.M.C., Liu, X., and Wu, J., Nat. Commun., 2020, no. 11, Article 1956. https://doi.org/10.1038/s41467-020-15878-6

  50. Yuuki, A., Masanori, N., Mizuki, W., Keisuke, T., Shin, K., and Inoue, M., Chem. Sci., 2014, vol. 5, pp. 4339–4345. https://doi.org/10.1039/C4SC01631A

    Article  CAS  Google Scholar 

  51. Veljković, J., Uzelac, L., Molčanov, K., Mlinarić-Majerski, K., Kralj, M., Wan, P., and Basarić, N., J. Org. Chem., 2012, vol. 77, no. 10, pp. 4596–4610. https://doi.org/10.1021/jo3002479

    Article  CAS  PubMed  Google Scholar 

  52. Harvey, B.G., Harrison, K.W., Davis, M.C., Chafin, A.P., Baca, J., and Merriman, W.W., Energy Fuels, 2016, vol. 30, no. 12, pp. 10171–10178. https://doi.org/10.1021/acs.energyfuels.6b01865

    Article  CAS  Google Scholar 

  53. Kovalev, V., Shokova, E., Shmailov, A., Vatsouro, I., and Tafeenko, V., Eur. J. Org. Chem., 2010, vol. 2010, pp. 3754–3761. https://doi.org/10.1002/ejoc.201000312

    Article  CAS  Google Scholar 

  54. Santiago, A.N., Basso, S.M., Toledo, C.A., and Rossi, R.A., New J. Chem., 2005, vol. 29, pp. 875–880. https://doi.org/10.1039/B418305C

    Article  CAS  Google Scholar 

  55. Nishimoto, Y., Kajioka, M., Saito, T., Yasuda, M., and Baba, A., Chem. Commun., 2008, no. 47, pp. 6396–6398. https://doi.org/10.1039/B816072D

    Article  Google Scholar 

  56. Guo, J.-Yu., Guan, T., Tao, J.-Yu., Zhao, K., and Loh, T.-P., Org. Lett., 2019, vol. 21, no. 20, pp. 8395–8399. https://doi.org/10.1021/acs.orglett.9b03169

    Article  CAS  PubMed  Google Scholar 

  57. Pratsch, G., Lackner, G.L., and Overman, L.E., J. Org. Chem., 2015, vol. 80, no. 12, pp. 6025–6036. https://doi.org/10.1021/acs.joc.5b00795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Armstrong, R.J., Niwetmarin, W., and Aggarwal, V.K., Org. Lett., 2017, vol. 19, no. 10, pp. 2762–2765. https://doi.org/10.1021/acs.orglett.7b01124

    Article  CAS  PubMed  Google Scholar 

  59. Matsuoka, S.-i., Ogiwara, N., and Ishizone, T., J. Am. Chem. Soc., 2006, vol. 128, no. 27, pp. 8708–8709. https://doi.org/10.1021/ja062157i

    Article  CAS  PubMed  Google Scholar 

  60. Ishizone, T., Matsuoka, S.-i., Sakai, S., Harada, W., and Tajima, H., Macromolecules, 2004, vol. 37, no. 19, pp. 7069–7071. https://doi.org/10.1021/ma048925c

    Article  CAS  Google Scholar 

  61. van Reenen, A.J., Mathias, L.J., and Coetzeea, L., Polymer, 2004, vol. 45, no. 3, pp. 799–804. https://doi.org/10.1016/j.polymer.2003.12.005

    Article  CAS  Google Scholar 

  62. Kobayashi, S., Kataoka, H., Ishizone, T., Toshinori, K., Ono, T., Kobukata, S., Arimoto, K., and Ogi, H., React. Funct. Polym., 2009, vol. 69, no. 7, pp. 409–415. https://doi.org/10.1016/j.reactfunctpolym.2008.12.010

    Article  CAS  Google Scholar 

  63. Han Dong, Wan and Moore, J.A., Polymer, 2009, vol. 50, no. 12, pp. 2551–2557. https://doi.org/10.1016/j.polymer.2009.04.014

    Article  CAS  Google Scholar 

  64. Robello, D.R., J. Appl. Polym. Sci., 2012, vol. 127, no. 1, pp. 96–103. https://doi.org/10.1002/app.37802

    Article  CAS  Google Scholar 

  65. Klimochkin, Yu.N., Korzhev, I.R., Vologin, M.F., and Bagrii, E.I., Petrol. Chem., 2001, vol. 41, no. 1, pp. 30–31.

    Google Scholar 

  66. Inomata, S., Matsuoka, S.-i., Sakai, S., Tajima, H., and Ishizone, T., Macromolecules, 2012, vol. 45, no. 10, pp. 4184–4195. https://doi.org/10.1021/ma300395s

    Article  CAS  Google Scholar 

  67. Inomata, S., Harada, Y., Nakamura, Y., Uehara, Y., and Ishizone, T., J. Polym. Sci. Part A: Polym. Chem., 2013, vol. 51, pp. 4111–4124. https://doi.org/10.1002/pola.26820

    Article  CAS  Google Scholar 

  68. Tyborski, C., Gillen, R., Fokin, A.A., Koso, T.V., Fokina, N.A., Hausmann, H., Rodionov, V.N., Schreiner, P.R., Thomsen, C., and Maultzsch, J., J. Phys. Chem. C, 2017, vol. 121, no. 48, pp. 27082–27088. https://doi.org/10.1021/acs.jpcc.7b07666

    Article  CAS  Google Scholar 

  69. Spohn, M., Alkahtani, M.H.A., Leiter, R., Qi, H., Kaiser, U., Hemmer, P., and Ziener, U., ACS Appl. Nano Mater., 2018, vol. 1, no. 11, pp. 6073–6080. https://doi.org/10.1021/acsanm.8b01238

    Article  CAS  Google Scholar 

  70. Goseki, R., Miyai, S., Uchida, S., and Ishizone, T., Polym. Chem., 2021, vol. 12, no. 25, pp. 3602–3611. https://doi.org/10.1039/D1PY00500F

    Article  CAS  Google Scholar 

  71. Friebel, J., Ender, C.P., Mezger, M., Wagner, M., Wagener, K.B.,and Weil, T., Macromolecules, 2019, vol. 52, no. 12, pp. 4483–4491. https://doi.org/10.1021/acs.macromol.9b00294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rojas, G., Inci, B., Wei, Y., and Wagener, K.B., J. Am. Chem. Soc., 2009, vol. 131, no. 47, pp. 17376–17386. https://doi.org/10.1021/ja907521p

    Article  CAS  PubMed  Google Scholar 

  73. Shubina, T.E., Gunchenko, P.A., Yurchenko, A.G., Schreiner, P.R., Butova, E.D., and Fokin, A.A., Theor. Exp. Chem., 2002, vol. 38, no. 1, pp. 8–14. https://doi.org/10.1023/A:1015303102214

    Article  CAS  Google Scholar 

  74. Fokin, A.A. and Schreiner, P.R., Chem. Rev., 2002, vol. 102, no. 5, pp. 1551–1594. https://doi.org/10.1021/cr000453m

    Article  CAS  PubMed  Google Scholar 

  75. Fokin A, A., Tkachenko, B.A., Gunchenko, P.A., Gusev, D.V., and Schreiner, P.R., Chemistry – A Eur. J., 2005, vol. 11, no. 23, pp. 7091–7101. https://doi.org/10.1002/chem.200500031

    Article  CAS  Google Scholar 

  76. Candian, A., Bouwman, J., Hemberger, P., Bodi, A., and Tielensa, A.G.G.M., Phys. Chem. Chem. Phys., 2018, vol., 20, pp. 5399–5406. https://doi.org/10.1039/C7CP05957D

  77. Novikovskii, A.A., Gunchenko, P.A., Fokin, A.A., Prikhodchenko, P.G., Serguchev, Yu.A., and Schreiner, P.R., Russ. J. Org. Chem., 2011, vol. 47, no. 9, pp. 1293–1299. https://doi.org/10.1134/S1070428011090053

    Article  CAS  Google Scholar 

  78. Steinmann, S.N., Wodrich, M.D., and Corminboeuf, C., Theor. Chem. Acc., 2010, vol. 127, pp. 429–442. https://doi.org/10.1007/s00214-010-0818-3

    Article  CAS  Google Scholar 

  79. Shamov, G.A., Budzelaar, P.H.M., and Schreckenbach, G., J. Chem. Theory Comput., 2010, vol. 6, no. 2, pp. 477–490. https://doi.org/10.1021/ct9005135

    Article  CAS  PubMed  Google Scholar 

  80. Abboud, J.-L.M., Alkorta, I., Dávalos, J.Z., Koppel, I.A., Koppel, I., Lenoir, D., Martínez, S., and Mishima, M., Bull. Chem. Soc. Jpn., 2016, vol. 89, no. 7, pp. 762–769. https://doi.org/10.1246/bcsj.20160026

    Article  CAS  Google Scholar 

  81. Kekišev, O., Kaljurand, I., Toom, L., Lenoir, D., Burk, P., and Järv, J., J. Phys. Org. Chem., 2015, vol. 28, pp. 447–451. https://doi.org/10.1002/poc.3435

    Article  CAS  Google Scholar 

  82. Wu, J.I., Hommes, N.J.R.v.E., Lenoir, D., and Bachrach, S.M., J. Phys. Org. Chem., 2019, vol. 32, p. e3965. https://doi.org/10.1002/poc.3965

  83. Bachrach, S.M., J. Phys. Org. Chem., 2018, vol. 31, p. e3840. https://doi.org/10.1002/poc.3840

  84. Zhuk, T.S., Koso, T., Pashenko, A.E., Hoc, N.T., Rodionov, V.N., Serafin, M., Schreiner, P.R., and Fokin, A.A., J. Am. Chem. Soc., 2015, vol. 137, no. 20, pp. 6577– 6586. https://doi.org/10.1021/jacs.5b01555

    Article  CAS  PubMed  Google Scholar 

  85. Tyborski, C., Hückstaedt, T., Gillen, R., Otto, T., Fokina, N.A., Fokin, A.A., Schreiner, P.R., and Maultzsch, J., Carbon, 2020, vol. 157, pp. 201–207. https://doi.org/10.1016/j.carbon.2019.10.014

    Article  CAS  Google Scholar 

  86. Baimuratov, M.R., Leonova, M.V., Shiryaev, V.A., and Klimochkin, Yu.N., Tetrahedron Lett., 2016, vol. 57, no. 48, pp. 5317–5320. https://doi.org/10.1016/j.tetlet.2016.10.059

    Article  CAS  Google Scholar 

  87. Islam, S.M. and Poirier, R.A., J. Phys. Chem. A, 2008, vol. 112, no. 1, pp. 152–159. https://doi.org/10.1021/jp077306d

    Article  CAS  PubMed  Google Scholar 

  88. Sen, A., Mehta, G., and Ganguly, B., Tetrahedron, vol. 67, no. 20, pp. 3754–3762. https://doi.org/10.1016/j.tet.2011.02.022

  89. Kozuch, S., Zhang, X., Hrovat, D.A., and Borden, W.T., J. Am. Chem. Soc., 2013, vol. 135, no. 46, pp. 17274– 17277. https://doi.org/10.1021/ja409176u

    Article  CAS  PubMed  Google Scholar 

  90. Bagrii, E.I., Borisov, Y.A., Kolbanovskii, Y.A., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, pp. 66–70. https://doi.org/10.1134/S0965544119010067

    Article  CAS  Google Scholar 

  91. Baranov, N.I., Safir, R.E., Bagrii, E.I., Bozhenko, K.V., and Cherednichenko, A.G., Petrol. Chem., 2020, vol. 60, pp. 1033–1042. https://doi.org/10.1134/S0965544120090042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Baranov or E. I. Bagrii.

Ethics declarations

A.L. Maximov, a co-author, is the Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, N.I., Bagrii, E.I., Safir, R.E. et al. Advances in the Chemistry of Unsaturated Adamantane Derivatives (A Review). Pet. Chem. 62, 352–375 (2022). https://doi.org/10.1134/S0965544122020153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122020153

Keywords:

Navigation