Skip to main content
Log in

Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Recent achievements in the development of new methods for producing acetic acid (AA) from methane using heterogeneous catalysts are summarized and systematized. Modern heterogeneous-catalytic processes of methane conversion to AA via syngas and alternative one- and two-step AA production procedures via “low-temperature” oxidative methane conversion (via oxidative coupling, oxyhalogenation, oxidation into methanol, or oxidative transformations of СН4 in the presence of carbon oxides) are considered. The major attention is paid to the one-step AA synthesis by methane oxydation with carbon dioxide (by carboxylation reaction). Specific features of heterogeneous catalysts recently developed for this reaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Amghizar, I., Vandewalle, L.A., van Geem, K.M., and Marin, G.B., Engineering, 2017, vol. 3, pp. 171–178. https://doi.org/10.1016/J.ENG.2017.02.006

    Article  CAS  Google Scholar 

  2. Statistical Review of World Energy 2019 (published by British Petroleum). http://globalfinances.ru/mirovyie-zapasyi-gaza/

  3. Aldoshin, S.M., Arutyunov, V.S., Savchenko, V.I., and Sedov, I.V., Neftegazokhim., 2015, no. 3, pp. 60–68.

    Google Scholar 

  4. Meng, X., Cui, X., Rajan, N.P., Yu, L., Deng, D., and Bao, X., Chemistry, 2019, vol. 5, no. 9, pp. 2296–2325. https://doi.org/10.1016/j.chempr.2019.05.008

    Article  CAS  Google Scholar 

  5. Raynes, S., Shah, M.A., and Taylor, R.A., Dalton Trans., 2019, vol. 48, pp. 10364–10384. https://doi.org/10.1039/c9dt00922a

    Article  CAS  PubMed  Google Scholar 

  6. Park, M.B., Park, E.D., and Ahn, W.S., Front. Chem., 2019, vol. 7, pp. 514–521. https://doi.org/10.3389/fchem.2019.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arutyunov, V.S., Strekova, L.N., Nikitin, A.V., Kryuchkov, M.V., Savchenko, V.I., Sedov, I.V., Eliseev, O.L., and Lapidus, A.L., Petrol. Chem., 2019, vol. 59, no. 4, pp. 370–379. https://doi.org/10.1134/S0965544119040029

    Article  CAS  Google Scholar 

  8. Matieva, Z.M., Kolesnichenko, N.V., Snatenkova, Y.M., and Khadzhiev, S.N., Petrol. Chem., 2019, vol. 59, no. 7, pp. 745–750. https://doi.org/10.1134/S0965544119070107

    Article  CAS  Google Scholar 

  9. Golubev, K.B. and Magomedova, M.V., Petrol. Chem., 2017, vol. 57, no. 10, pp. 885–890. https://doi.org/10.1134/S0965544117100073

    Article  CAS  Google Scholar 

  10. Asalieva, E.Y., Kul’chakovskaya, E.V., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2020, vol. 60, no. 1, pp. 69–74. DOI:10.1134/S0965544120010028

    Article  CAS  Google Scholar 

  11. Kulchakovskaya, E.V., Asalieva, E.Y., Gryaznov, K.O., Sineva, L.V., and Mordkovich, V.Z., Petrol. Chem., 2015, vol. 55, no. 1, pp. 45–50. https://doi.org/10.1134/S0965544115010089

    Article  CAS  Google Scholar 

  12. Kolesnichenko, N.V., Ezhova, N.N., and Snatenkova, Yu.M., Russ. Chem. Rev., 2020, vol. 89, no. 2, pp. 191–224. https://doi.org/10.1070/RCR4900

    Article  CAS  Google Scholar 

  13. Ezhova, N.N., Kolesnichenko, N.V., and Batova, T.I., Petrol. Chem., 2020, vol. 60, no. 4, pp. 459–470. https://doi.org/10.1134/S0965544120040064

    Article  CAS  Google Scholar 

  14. Golubev, K.B., Batova, T.I., Kolesnichenko, N.V., and Maximov, A.L., Catal. Commun., 2019, vol. 129, article no. 105744. https://doi.org/10.1016/j.catcom.2019.105744

  15. Dedov, A.G., Loktev, A.S., Golikov, S.D., Spesivtsev, N.A., Moiseev, I.I., Nipan, G.D., and Dorokhov, S.N., Petrol. Chem., 2015, vol. 55, no. 2, pp. 163–168. https://doi.org/10.1134/S0965544115020061

    Article  CAS  Google Scholar 

  16. Stepanov, A.A., Korobitsyna, L.L., Vosmerikov, A.V., and Zaikovskii, V.I., Petrol. Chem., 2019, vol. 59, no. 1, pp. 91–98. https://doi.org/10.1134/S0965544119010146

    Article  CAS  Google Scholar 

  17. Julian, I., Roedern, M.B., Hueso, J.L., Irusta, S., Baden, A.K., Mallada, R., Davis, Z., and Santamaria, J., Appl. Catal. B: Environmental, 2020, vol. 263, article no. 118360. https://doi.org/10.1016/j.apcatb.2019.118360

  18. Razdan, N.K., Kumar, A., Foley, B.L., and Bhan, A., J. Catal., 2020, vol. 381, pp. 261–270. https://doi.org/10.1016/j.jcat.2019.11.004

    Article  CAS  Google Scholar 

  19. Zhang, T., Yang, X., and Ge, Q., Catal. Today, 2020, vol. 339, pp. 54–61. https://doi.org/10.1016/j.cattod.2019.03.020

    Article  CAS  Google Scholar 

  20. Golubev, K.B., Kolesnichenko, N.V., Wei, W., Su X., and Zhang, K., Catal. Commun., 2021, vol. 149, article no. 106176. https://doi.org/10.1016/j.catcom.2020.106176

  21. Golubev, K.B., Bedenko, S.P., Budnyak, A.D., Ilolov, A.M., Tret’yakov, V.F., Talyshinskii, R.M., Maksimov, A.L., and Khadzhiev, S.N., Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 918–923. https://doi.org/10.1134/S1070427219070061

    Article  CAS  Google Scholar 

  22. Kulikova, M.V., Dement’eva, O.S., and Norko, S.I., Petrol. Chem., 2020, vol. 60, no. 1, pp. 75–80. https://doi.org/10.1134/S0965544120010090

    Article  CAS  Google Scholar 

  23. Gorlov, E.A., Shumovskii, A.V., Yas’yan, Y.P., Niskovskaya, M.Y., Kotelev, M.S., Smirnova, E.M., and Ol’gin, A.A., Petrol. Chem., 2019, vol. 59, no. 11, pp. 1249–1255. https://doi.org/10.1134/S0965544119110057

    Article  CAS  Google Scholar 

  24. Maksimov, A.L., Losev, D.V., Kardasheva, Y.S., and Karakhanov, E.A., Petrol. Chem., 2014, vol. 54, no. 4, pp. 283–287. https://doi.org/10.1134/S0965544114040070

    Article  CAS  Google Scholar 

  25. Chepaikin, E.G., Menchikova, G.N., and Pomogailo, S.I., Russ. Chem. Bull., Int. Ed., 2019, vol. 68, no. 8, pp. 1465—1477. https://doi.org/10.1007/S11172-019-2581-5

    Article  CAS  Google Scholar 

  26. Gunsalus, N.J., Koppaka, A., Park, S.H., Bischof, S.M., Hashiguchi, B.G., and Periana, R.A., Chem. Rev., 2017, vol. 117, pp. 8521−8573. https://doi.org/10.1021/acs.chemrev.6b00739

    Article  CAS  PubMed  Google Scholar 

  27. Kalck, Ph., Berre, C.L., and Serp, Ph., Coord. Chem. Rev., 2020, vol. 402, article no. 213078. https://doi.org/10.1016/j.ccr.2019.213078

  28. Budiman, A.W., Nam, J.S., Park, J.H., Mukti, R.I., Chang, T.S., Bae, J.W., and Choi, M.J., Catal. Surv. Asia, 2016, vol. 20, pp. 173–193. https://doi.org/10.1007/s10563-016-9215-9

    Article  CAS  Google Scholar 

  29. Llamas, M., Tomás-Pejó, E., and González-Fernández, C., New Biotechnol., 2020, vol. 56, pp. 123–129. https://doi.org/10.1016/j.nbt.2020.01.002

    Article  CAS  Google Scholar 

  30. Karim, Kh., Mamedov, E., Al-Hazmi, M.H., Fakeeha, A.H., Soliman, M.A., Al-Zeghayer, Y.S., AlFatish, A.S., and Al-Arify, A.A., US Patent 6383977, 2002.

  31. Borchert, H. and Dingerdissen, U., US Patent 6399816, 2002.

  32. Yoneda, N., Kusano, S., Yasui, M., Pujado, P., and Wilcher, S., Appl. Catal. A: General, 2001, vol. 221, pp. 253–265. https://doi.org/10.1016/S0926-860X(01)00800-6

    Article  CAS  Google Scholar 

  33. Ren, Z., Lyu, Y., Song, X., and Ding, Y., Appl. Catal. A: General, 2020, vol. 595, article no. 117488. https://doi.org/10.1016/j.apcata.2020.117488

  34. Paulik, F.E., Hershman, A., Coeur, C., Knox, W.R., and Roth, J.F., Patent US 3769329, 1973.

  35. Smith, B.L., Torrence, G.P., Agullo, A., and Alder, J.S., Patent US 5001259, 1991.

  36. Williams, B.L., Patent US 6140535, 2000.

  37. Key, L.A. and Law, D.J., Patent US 6472558, 2002.

  38. Hennigan, S.A., Patent US 10550059, 2020.

  39. Bristow, T.C. and Williams, P.D., Patent US 10537847, 2020.

  40. Ni, Y., Shi, L., Liu, H., Zhang, W., Liu, Y., Zhu, W., and Liu, Z., Catal. Sci. Technol., 2017, no. 7, pp. 4818–4822. https://doi.org/10.1039/C7CY01621B

    Article  CAS  Google Scholar 

  41. Seeburg, D., Liu, D., Dragomirova, R., Atia, H., Pohl, M.M., Amani, H., Georgi, G., Kreft, S., and Wohlrab, S., Processes, 2018, vol. 6, no. 12, article no. 263. https://doi.org/10.3390/pr6120263

  42. Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2016, vol. 56, no. 2, pp. 77–95. https://doi.org/10.1134/S0965544116020079

    Article  CAS  Google Scholar 

  43. Luk, H.T., Mondelli, C., Ferre, D.C., Stewart, J.A., and Perez-Ramirez, J., Chem. Soc. Rev., 2017, vol. 46, pp. 1358–1426. https://doi.org/10.1039/C6CS00324A

    Article  CAS  PubMed  Google Scholar 

  44. Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  45. Kasnerik, V.I., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., Konnov, S.V., and Ivanov, A.O., Petrol. Chem., 2016, vol. 56, no. 3, pp. 217–223. https://doi.org/10.1134/S0965544116030051

    Article  CAS  Google Scholar 

  46. Smith, B.L., Torrence, G.P., Agullo, A., and Alder, J.S., European Patent 01618774, 1985.

  47. Garland, C.S., Giles, M.F., Poole, A.D., and Sunley, J.G., European Patent 0728726, 1996.

  48. Backer, M.J., Giles, M.F., Garland, C.S., Muskett, M.J., Rafeletos, G., Smith, S.J., Sunley, J.G., Watt, R.J., and Williams, B.L., European Patent 0752406, 1997.

  49. Baker, M.J., Giles, M.F., Garland, C.S., and Rafeletos, G.C., European Patent 0749948, 2000.

  50. Takeshi Minami, Kenji Shimokawa, and Kazuhiko Hamato, Patent US 5364963, 1994.

  51. Takeshi Minami, Kazuhiko Hamato, Kenji Shimokawa, and Yoshimi Shiroto, Patent US 5576458, 1996.

  52. Ren, Zh., Lyu, Y., Song, X., Liu, Y., Jiang, Zh., Lin, R., and Ding, Y., Adv. Mater., 2019, article no. 1904976. https://doi.org/10.1002/adma.201904976

  53. Bristow, T.C., Korean Patent Appl. 10-2015-0096792, 2015.

  54. Cheung, P., Iglesia, E., Sunley, J.G., Law, D.J., and Bhan, A., Patent US 7465822, 2008.

  55. Armitage, G.G., Ditzel, E.J., Law, D.J., and Sunley, J.G., Patent US 8431732, 2013.

  56. Hazel, N.J., Patent US 10512902, 2019.

  57. Sunley, J.G., Patent US 10583426, 2020.

  58. Cao, K., Fan, D., Li, L., Fan, B., Wang, L., Zhu, D., Wang, Q., Tian, P., and Liu, Zh., ACS Catal., 2020, vol. 10, no. 5, pp. 3372–3380. https://doi.org/10.1021/acscatal.9b04890

    Article  CAS  Google Scholar 

  59. Li, X., Chen, X., Yang, Zh., Zhu, X., Xu, Sh., Xie, S., Liu, Sh., Liu, X., and Xu, L., Micropor. Mesopor. Mater., 2018, vol. 257, pp. 79–84. https://doi.org/10.1016/j.micromeso.2017.07.058

    Article  CAS  Google Scholar 

  60. Xu, B.Q. and Sachtler, W.M.H., J. Catal., 1998, vol. 180, no. 2, pp. 194–206. https://doi.org/10.1006/jcat.1998.2287

    Article  CAS  Google Scholar 

  61. Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, Ch., Zhang, Q., Chen, J., Peng, L., Chen, M., and Wang, Y., Angew. Chem. Int. Ed., 2018, vol. 57, no. 37, pp. 12012–12016. https://doi.org/10.1002/anie.201807113

    Article  CAS  Google Scholar 

  62. Sheldon, D., Johnson Matthey Technol. Rev., 2017, vol. 61, no. 3, pp. 172–182. https://doi.org/10.1595/205651317x695622

    Article  CAS  Google Scholar 

  63. Bozzano, G. and Manenti, F., Prog. Energy Combust. Sci., 2016, vol. 56, pp. 71–105. https://doi.org/10.1016/j.pecs.2016.06.001

    Article  Google Scholar 

  64. Zhuchkov, D.P., Nenasheva, M.V., Terenina, M.V., Kardasheva, Yu.S., Gorbunov, D.N., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 1, pp. 1–14. https://doi.org/10.1134/S0965544121010011

    Article  CAS  Google Scholar 

  65. Pavlechko, P.D., Asaro, M., and Naqvi, S., Process Economics Program. Review 2014-10. Acetic Acid from Syngas via the BP-SaaBre Process, 2014. https://ihsmarkit.com/pdf/RW2014-10-toc_214358110917062932.pdf

  66. Zhan, E., Xiong, Z., and Shen, W., J. Energy Chem., 2019, vol. 36, pp. 51–63. https://doi.org/10.1016/j.jechem.2019.04.015

    Article  Google Scholar 

  67. Gao, X., Xu, B., Yang, G., Feng, X., Yoneyama, Y., Taka, U., and Tsubaki, N., Catal. Sci. Technol., 2018, no. 8, pp. 2087–2097. https://doi.org/10.1039/C8CY00010G

    Article  CAS  Google Scholar 

  68. Knifton, J.F., J. Catal., 1985, vol. 96, no. 2, pp. 439–453. https://doi.org/10.1016/0021-9517(85)90313-6

    Article  CAS  Google Scholar 

  69. Ren, Zh., Lyu, Y., Feng, S., Song, X., and Ding, Y., Chin. J. Catal., 2018, vol. 39, no. 6, pp. 1060–1069. https://doi.org/10.1016/S1872-2067(18)63019-0

    Article  CAS  Google Scholar 

  70. Saikia, P.K., Sarmah, P.P., Borah, B.J., Saikia, L., and Dutta, D.K., J. Mol. Catal. A: Chem., 2016, vol. 412, pp. 27–33. https://doi.org/10.1016/j.molcata.2015.11.015

    Article  CAS  Google Scholar 

  71. Ren, Zh., Lyu, Y., Feng, S., Song, X., and Ding, Y., Mol. Catal., 2017, vol. 442, pp. 83–88. https://doi.org/10.1016/j.mcat.2017.09.007

    Article  CAS  Google Scholar 

  72. Ren, Z., Liu, Y., Lyu, Y., Song, X., Zheng, C., Feng, S., Jiang, Z., and Ding, Y., J. Catal., 2019, vol. 369, pp. 249–256. https://doi.org/10.1016/j.jcat.2018.11.015

    Article  CAS  Google Scholar 

  73. Park, K., Lim, S., Baik, J.H., Kim, H., Jung, K.D., and Yoon, S., Catal. Sci. Technol., 2018, vol. 8, pp. 2894–2900. https://doi.org/10.1039/C8CY00294K

    Article  CAS  Google Scholar 

  74. Kwak, J.H., Dagle, R., Tustin, G.C., Zoeller, J.R., Allard, L.F., and Wang, Y., J. Phys. Chem. Lett., 2014, no. 5, pp. 566–572. https://doi.org/10.1021/jz402728e

    Article  CAS  PubMed  Google Scholar 

  75. Hensley, A.J.R., Zhang, J., Vinçon, I., Hernandez, X.P., Tranca, D., Seifert, G., J. Catal., 2018, vol. 361, pp. 414–422. https://doi.org/10.1016/j.jcat.2018.02.022

    Article  CAS  Google Scholar 

  76. Feng, S., Song, X., Ren, Zh., and Ding, Y., Ind. Eng. Chem. Res., 2019, vol. 58, no. 12, pp. 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402

    Article  CAS  Google Scholar 

  77. Qi, J. and Christopher, P., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 12632–12641. https://doi.org/10.1021/acs.iecr.9b02289

    Article  CAS  Google Scholar 

  78. Qi, J., Finzel, J., Robatjazi, H., Xu, M., Hoffman, A.S., Bare, S.R., Pan, X., and Christopher, Ph., J. Am. Chem. Soc., 2020, vol. 142, no. 33, pp. 14178–14189. https://doi.org/10.1021/jacs.0c05026

    Article  CAS  PubMed  Google Scholar 

  79. Wang, X., Li, R., Yu, Ch., Liu, Y., Liu, L., Xu, Ch., Zhou, H., and Lu, Ch., Ind. Eng. Chem. Res., 2019, vol. 58, no. 39, pp. 18065–18072. https://doi.org/10.1021/acs.iecr.9b02610

    Article  CAS  Google Scholar 

  80. Li, Y., Yu, M., Cai, K., Wang, M., Lv, J., Howe, R.F., Huang, Sh., and Ma, X., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 20, pp. 11374–11381. https://doi.org/10.1039/D0CP00850H

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Sh., Cheng, Z., Li, Y., Sun, J., Cai, K., Huang, Sh., Lv, J., Wang, Sh., and Ma, X., Ind. Eng. Chem. Res., 2020, vol. 59, no. 31, pp. 13861–13869. https://doi.org/10.1021/acs.iecr.0c01156

    Article  CAS  Google Scholar 

  82. Wang, X.S., Li, R.J., Yu, C.-C., Xu, C.M., Liu, Y.X., Xu, Ch.M., and Lu, C.X., J. Fuel Chem. Technol., 2020, vol. 48, no. 8, pp. 960–969. https://doi.org/10.1016/S1872-5813(20)30067-0

    Article  CAS  Google Scholar 

  83. He, P., Li, Y., Cai, K., Xiong, X., Lv, J., Wang, Y., Huang, S., and Ma, X., ACS Appl. Nano Mater., 2020, vol. 3, no. 7, pp. 6460–6468. https://doi.org/10.1021/acsanm.0c00929

  84. Zhou, H., Zhu, W., Shi, L., Liu, H., Liu, Sh., Xu, Sh., Ni, Y., Liu, Y., Li, L., and Liu, Zh., Catal. Sci. Technol., 2015, vol. 5, no. 3, pp. 1961–1968. https://doi.org/10.1039/C4CY01580K

    Article  CAS  Google Scholar 

  85. Zhao, P., Qian, W., Ma, H., Zhang, H., and Ying, W., Catal. Lett., 2021. vol. 151, pp. 940–954. https://doi.org/10.1007/s10562-020-03359-w

  86. Li, L., Wang, Q., Liu, H., Sun, T., Fan, D., Yang, M., Tian, P., and Liu, Zh., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 38, pp. 32239–32246. https://doi.org/10.1021/acsami.8b11823

    Article  CAS  PubMed  Google Scholar 

  87. Li, Y., Huang, Sh., Cheng, Z., Cai, K., Li, L., Milan, E., Lv, J., Wang, Y., Sun, Q., and Ma, X., Appl. Catal. B: Environmental, 2019, vol. 256, article no. 117777. https://doi.org/10.1016/j.apcatb.2019.117777

  88. Reule, A.A.C., Prasad, V., and Semagina, N., Micropor. Mesopor. Mater., 2018, vol. 263, pp. 220–230. https://doi.org/10.1016/j.micromeso.2017.12.026

    Article  CAS  Google Scholar 

  89. Wang, Sh., Guo, W., Zhu, L., Wang, H., Qiu, K., and Cen, K., J. Phys. Chem. C, 2015, vol. 119, no. 1, pp. 524–533. https://doi.org/10.1021/jp511543x

    Article  CAS  Google Scholar 

  90. Cheng, Z., Huang, Sh., Li, Y., Cai, K., Yao, D., Lv, J., Wang, Sh., and Ma, X., Appl. Catal. A: General, 2019, vol. 576, pp. 1–10. https://doi.org/10.1016/j.apcata.2019.02.032

    Article  CAS  Google Scholar 

  91. Reule, A.A.C. and Semagina, N., ACS Catal., 2016, vol. 6, no. 8, pp. 4972–4975. https://doi.org/10.1021/acscatal.6b01464

    Article  CAS  Google Scholar 

  92. Sheng, H., Ma, H., Qian, W., Fei, N., Zhang, H., and Ying, W., Energy Fuels, 2019, vol. 33, no. 10, pp. 10159–10166. https://doi.org/10.1021/acs.energyfuels.9b02335

    Article  CAS  Google Scholar 

  93. Li, Sh., Cai, K., Li, Y., Liu, Sh., Yu, M., Wang, Y., Ma, X., and Huang, Sh., ChemCatChem.., 2020, vol. 12, no. 12, pp. 3290–3297. https://doi.org/10.1002/cctc.202000533

    Article  CAS  Google Scholar 

  94. Lu, Q., Qian, W., Ma, H., Zhang, H., and Ying, W., Catalysts, 2021, vol. 11, no. 2, article no. 197. https://doi.org/10.3390/catal11020197

  95. Xue, H.F., Huang, X.M., Zhan, E.S., Ma, M., and Shen, W.J., Catal. Commun., 2013, vol. 37, pp. 75–79. https://doi.org/10.1016/j.catcom.2013.03.033

    Article  CAS  Google Scholar 

  96. Zhao, N., Tian, Y., Zhang, L., Cheng, Q., Lyu, Sh., Ding, T., Hu, Zh., Ma, X., and Li, X., Chin. J. Catal., 2019, vol. 40, no. 6, pp. 895–904. https://doi.org/10.1016/S1872-2067(19)63335-8

    Article  CAS  Google Scholar 

  97. Li, Y., Sun, Q., Huang, Sh., Cheng, Z., Cai, K., Lv, J., and Ma, X., Catal. Today, 2018, vol. 311, pp. 81–88. https://doi.org/10.1016/j.cattod.2017.08.050

    Article  CAS  Google Scholar 

  98. Kang, J., He, S., Zhou, W., Shen, Z., Li, Y., Chen, M., Zhang, Q., and Wang, Y., Nat. Commun., 2020, vol. 11, article no. 827. https://doi.org/10.1038/s41467-020-14672-8

  99. Cao, Zh., Hu, T., Guo, J., Xie, J., Zhang, N., Zheng, J., Che, L., and Chen, B.H., Fuel, 2019, vol. 254, article no. 115542. https://doi.org/10.1016/j.fuel.2019.05.125

  100. Tong, Ch., Zhang, J., Chen, W., Liu, X., Ye, L., and Yuan, Y., Catal. Sci. Technol., 2019, vol. 9, no. 21, pp. 6136–6144. https://doi.org/10.1039/C9CY01321K

    Article  CAS  Google Scholar 

  101. Zhang, Y., Ding, Ch., Wang, J., Jia, Y., Xue, Y., Gao, Zh., Yu, B., Gao, B., Zhang, K., and Liu, P., Catal. Sci. Technol., 2019, vol. 9, pp. 1581–1594. https://doi.org/10.1039/C8CY02593B

    Article  CAS  Google Scholar 

  102. Fan, Y., Ma, D., and Bao, X., Catal. Lett., 2009, vol. 130, pp. 286–290. https://doi.org/10.1007/s10562-009-0017-9

    Article  CAS  Google Scholar 

  103. Wang, K.X., Xu, H.F., Li, W.S., Au, C.T., and Zhou, X.P., Appl. Catal. A: General, 2006, vol. 304, no. 1, pp. 168–177. https://doi.org/10.1016/j.apcata.2006.02.035

    Article  CAS  Google Scholar 

  104. Lin, R., Amrute, A.P., and Pérez-Ramírez, J., Chem. Rev., 2017, vol. 117, pp. 4182–4247. https://doi.org/10.1021/acs.chemrev.6b00551

    Article  CAS  PubMed  Google Scholar 

  105. Bao, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2019, vol. 9, no. 4, pp. 3026–3053. https://doi.org/10.1021/acscatal.8b03924

    Article  CAS  Google Scholar 

  106. Paunovic, V., Zichittella, G., Moser, M., Amrute, A.P., and Perez-Ramirez, J., Nat. Chem., 2016, no. 8, pp. 803–809. https://doi.org/10.1038/nchem.2522

    Article  CAS  PubMed  Google Scholar 

  107. McFarlan, A.J., Patent US 5659077, 1997.

  108. НаGöltl, F., Michel, C., Andrikopoulos, P.C., Love, A.M., Hafner, J., Hermans, I., and Sautet, P., ACS Catal., 2016, vol. 6, no. 12, pp. 8404–8409. https://doi.org/10.1021/acscatal.6b02640

    Article  CAS  Google Scholar 

  109. Mahyuddin, M.H., Staykov, A., Shiota, Y., and Yoshizawa, K., ACS Catal., 2016, vol. 6, no. 12, pp. 8321–8331. https://doi.org/10.1021/acscatal.6b01721

    Article  CAS  Google Scholar 

  110. Sushkevich, V.L. and van Bokhoven, J.A., Catal. Sci. Technol., 2018, vol. 8, pp. 4141–4150. https://doi.org/10.1039/C8CY01055B

    Article  CAS  Google Scholar 

  111. Bunting, R.J., Thompson, J., and Hu, P., Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 11686–11694. https://doi.org/10.1039/D0CP01284J

    Article  CAS  PubMed  Google Scholar 

  112. Narsimhan, K., Michaelis, V.K., Mathies, G., Gunther, W.R., Griffin, R.G., and Roman-Leshkov, Y., J. Am. Chem. Soc., 2015, vol. 137, no. 5, pp. 1825–1832. https://doi.org/10.1021/ja5106927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moteki, T., Tominaga, N., and Ogura, M., ChemCatChem., 2020, vol. 12, no. 11, pp. 2957–2961. https://doi.org/10.1002/cctc.202000168

    Article  CAS  Google Scholar 

  114. Golubev, K.B., Yashina, O.V., Batova, T.I., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2021, vol. 61, no. 6, pp. 663–669. https://doi.org/10.1134/S0965544121040058

    Article  CAS  Google Scholar 

  115. Tang, Y., Li, Y., Fung, V., Jiang, D., Huang, W., Zhang, Sh., Iwasawa, Y., Sakata, T., Nguyen, L., Zhang, X., Frenkel, A.I., and Tao, F., Nat. Commun., 2018, no. 9, article no. 1231. https://doi.org/10.1038/s41467-018-03235-7

  116. Shan, J., Li, M., Allard, L.F., Lee, S., and FlytzaniStephanopoulos, M., Nature, 2017, vol. 551, no. 7682, pp. 605–608. https://doi.org/10.1038/nature24640

    Article  CAS  PubMed  Google Scholar 

  117. Golubev, K.B., Yashina, O.V., Ezhova, N.N., and Kolesnichenko, N.V., Mendeleev Commun., 2021, vol. 31, pp. 712–714. https://doi.org/10.1016/j.mencom.2021.09.040

    Article  CAS  Google Scholar 

  118. Yuan, Q., Zhang, Q.H., and Wang, Y., J. Catal., 2005, vol. 233, no. 1, pp. 221–233. https://doi.org/10.1016/j.jcat.2005.04.025

    Article  CAS  Google Scholar 

  119. Wang, Y., Yuan, Q., Zhang, Q.H., and Deng, W.P., J. Phys. Chem. C, 2007, vol. 111, no. 5, pp. 2044–2053. https://doi.org/10.1021/jp066651k

    Article  CAS  Google Scholar 

  120. Shavi, R., Ko, J., Cho, A., Han, J.W., and Seo, J.G., Appl. Catal. B: Environmental, 2018, vol. 229, pp. 237–248. https://doi.org/10.1016/j.apcatb.2018.01.058

    Article  CAS  Google Scholar 

  121. Pan, J., Chem. Technol. Ind. J., 2016, vol. 11, no. 6, pp. 108–122.

    Google Scholar 

  122. Rabie, A.M., Betiha, M.A., and Park, S.E., Appl. Catal. B: Environmental, 2017, vol. 215, pp. 50–59. https://doi.org/10.1016/j.apcatb.2017.05.053

    Article  CAS  Google Scholar 

  123. Chen, W. and Proulx, G., Patent US 2014/0275619, 2014.

  124. Zurcher, F.R., Cizeron, J.M., Schammel, W.P., Tkachenko, A., Gamoras, J., Karshtedt, D., Nyce, G., Rumplecker, A., McCormick, J., Merzlyak, A., Alcid, M., Rosenberg, D., and Ras, E.J., Patent US 8962517, 2015.

  125. Sollier, B.M., Gómez, L.E., Boix, A.V., and Miró, E.E., Appl. Catal. A: General, 2018, vol. 550, pp. 113–121. https://doi.org/10.1016/j.apcata.2017.10.023

    Article  CAS  Google Scholar 

  126. Aseem, A., Jeba, G.G., Conato, M.T., Rimer, J.D., and Harold, M.P., Chem. Eng. J., 2018, vol. 331, pp. 132–143. https://doi.org/10.1016/j.cej.2017.08.093

    Article  CAS  Google Scholar 

  127. Obana, Y., Abe, K., Oguchi, W., Yamada, K., and Uchida, H., Patent US 6706919, 2004.

  128. Wang, L.X., Xu, S.L., Chu, W.L., and Yang, W.S., Chin. J. Catal., 2009, vol. 30, no. 12, p;p. 1281–1286. https://doi.org/10.1016/S1872-2067(08)60144-8

  129. Sano, K., Uchida, H., and Wakabayashi, S., Catal. Surv. Asia, 1999, vol. 3, pp. 55–60. https://doi.org/10.1023/A:1019003230537

    Article  CAS  Google Scholar 

  130. Sun, M., Zhang, J., Putaj, P., Caps, V., Lefebvre, F., Pelletier, J., and Basset, M., Chem. Rev., 2014, vol. 114, no. 2, pp. 981–1019. https://doi.org/10.1021/cr300302b

    Article  CAS  PubMed  Google Scholar 

  131. EDHOX™ Technology. Introducing an Alternative, Low-Carbon Path to Ethylene and Acetic Acid. https://www.linde-engineering.ru/ru/process-plants/petrochemical-plants/edhox-technology/index.html?

  132. Arutyunov V., Direct Methane to Methanol. Foundations and Prospects of the Process, Elsevier, 2014. https://www.sciencedirect.com/book/9780444632531/direct-methane-to-methanol

  133. Gounder, R. and Iglesia, E., Chem. Commun., 2013, vol. 49, pp. 3491–3509. https://doi.org/10.1039/C3CC40731D

    Article  CAS  Google Scholar 

  134. Qi, G., Wang, Q., Xu, J., Trébosc, J., Lafon, O., Wang, Ch., Amoureux, J.P., and Deng, F., Angew. Chem. Int. Ed., 2016, vol. 128, no. 51, pp. 16058–16062. https://doi.org/10.1002/ange.201608322

    Article  Google Scholar 

  135. Wang, X., Qi, G., Xu, J., Li, B., Wang, C., and Deng, F., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 3850–3853. https://doi.org/10.1002/anie.201108634

    Article  CAS  Google Scholar 

  136. Wu, J.F., Yu, S.M., Wang, W.D., Fan, Y.X., Bai, S., J. Am. Chem. Soc., 2013, vol. 135, no. 36, pp. 13567–13573. https://doi.org/10.1021/ja406978q

    Article  CAS  PubMed  Google Scholar 

  137. Gabrienko, A.A., Arzumanov, S.S., Luzgin, M.V., Stepanov, A.G., and Parmon, V.N., J. Phys. Chem. C, 2015, vol. 119, no. 44, pp. 24910–24918. https://doi.org/10.1021/acs.jpcc.5b08759

    Article  CAS  Google Scholar 

  138. Wen, F., Zhang, J., Chen, Zh., Zhou, Z., Liu, H., Zhu, W., and Liu, Zh., Catal. Sci. Technol., 2021, vol. 11, pp. 1358–1364. https://doi.org/10.1039/D0CY01983F

    Article  CAS  Google Scholar 

  139. Corma, A., Law, D., Boronat, M., and MartínezSánchez, C., J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16316−16323. https://doi.org/10.1021/ja805607m

    Article  CAS  PubMed  Google Scholar 

  140. Ham, H., Jung, H.S., Kim, H.S., Kim, J., Cho, S.J., Lee, W.B., Park, M.J., and Bae, J.W., ACS Catal., 2020, vol. 10, no. 9, pp. 5135–5146. https://doi.org/10.1021/acscatal.9b05144

    Article  CAS  Google Scholar 

  141. Jung, H.S., Xuan, N.T., and Bae, J.W., Micropor. Mesopor. Mater., 2021, vol. 310, article no. 110669. https://doi.org/10.1016/j.micromeso.2020.110669

  142. Ham, H., Kim, J., Lim, J.H., Sung, W.Ch., Lee, D.H., and Bae, J.W., Catal. Today., 2018, vol. 303, pp. 93–99. https://doi.org/10.1016/j.cattod.2017.08.011

    Article  CAS  Google Scholar 

  143. Li, X., Liu, X., Liu, Sh., Xie, S., Zhu, X., Chen, F., and Xu, L., RSC Adv., 2013, vol. 3, no. 37, article no. 16549. https://doi.org/10.1039/c3ra42197j

  144. Xiong, Zh., Zhan, E., Li, M., and Shen, W., Chem. Commun., 2020, vol. 56, pp. 3401–3404. https://doi.org/10.1039/D0CC00886A

    Article  CAS  Google Scholar 

  145. Wei, Q., Yang, G., Gao, X., Tan, L., Ai, P., Zhang, P., Lu, P., Yoneyama, Y., and Tsubaki, N., Chem. Eng. J., 2017, vol. 316, pp. 832–841. https://doi.org/10.1016/j.cej.2017.02.019

    Article  CAS  Google Scholar 

  146. Feng, X., Yao, J., Li, H., Fang, Y., Yoneyama, Y., Yang, G., and Tsubaki, N., Chem. Commun., 2019, vol. 55, pp. 1048–1051. https://doi.org/10.1039/C8CC08411D

    Article  CAS  Google Scholar 

  147. Lusardi, M., Chen, T.T., Kale, M., Kang, J.H., Neurock, M., and Davis, M.E., ACS Catal., 2020, vol. 10, no. 1, pp. 842–851. https://doi.org/10.1021/acscatal.9b04307

    Article  CAS  Google Scholar 

  148. Research and Innovation, Carbon Capture and Storage (CCS). https://www.exxonmobil.ru/ru-RU/Research-and-innovation/Carbon-capture-and-storage

  149. Qian Zhu, Clean Energy, 2019, vol. 3, no. 2, pp. 85–100. https://doi.org/10.1093/ce/zkz008

    Article  Google Scholar 

  150. Men’shchikov, I., Shkolin, A., Khozina, E., and Fomkin, A., Nanomaterials, 2020, vol. 10, no. 7, article no. 1379. https://doi.org/10.3390/nano10071379

  151. Tsivadze, A.Y., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russ. Chem. Rev., 2018, vol. 87, no. 10, pp. 950–983. https://doi.org/10.1070/RCR4807

    Article  CAS  Google Scholar 

  152. Moreno-Pirajan, J.C., Bastidas-Barranco, M.J., and Giraldo, L., J. Therm. Anal. Calorim., 2018, vol. 131, no. 1, pp. 259–271. https://doi.org/10.1007/s10973-017-6132-8

    Article  CAS  Google Scholar 

  153. Li, J., Wang, L., Cao, Y., Zhang, Ch., He, P., and Li, H., Chin. J. Chem. Eng., 2018, vol. 26, no. 11, pp. 2266–2279. https://doi.org/10.1016/j.cjche.2018.07.008

    Article  CAS  Google Scholar 

  154. Hong, J.T., Li, M., Zhang, J.N., Sun, B.Q., and Mo, F.Y., ChemSusChem., 2019, vol. 12, no. 1, pp. 6–39. https://doi.org/10.1002/cssc.201802012

    Article  CAS  PubMed  Google Scholar 

  155. Labinger, J.A. and Bercaw, J.E., Nature, 2002, vol. 417, pp. 507–514. https://doi.org/10.1038/417507a

    Article  CAS  PubMed  Google Scholar 

  156. Schwach, P., Pan, X., and Bao, X., Chem. Rev., 2017, vol. 117, no. 13, pp. 8497–8520. https://doi.org/10.1021/acs.chemrev.6b00715

    Article  CAS  PubMed  Google Scholar 

  157. Havran, V., Duduković, M.P, and Lo, C.S., Ind. Eng. Chem. Res., 2011, vol. 50, no. 12, pp. 7089–7100. https://doi.org/10.1021/IE2000192

    Article  CAS  Google Scholar 

  158. Liu, Sh., Winter, L.R., and Chen, J.G., ACS Catal., 2020, vol. 10, pp. 2855–2871. https://doi.org/10.1021/acscatal.9b04811

    Article  CAS  Google Scholar 

  159. Wang, L., Yi, Y., Wu, Ch., Guo, H., and Tu, X., Angew. Chem. Int. Ed., 2017, vol. 56, no. 44, pp. 13679–13683. https://doi.org/10.1002/anie.201707131

    Article  CAS  Google Scholar 

  160. Dreyfuss, H., Patent GB 226248A, 1923.

  161. Fujiwara, Y., Kitamura, F., and Taniguchi, H., Patent JPH 10226665A, 1998.

  162. Freund, H.J., Wambach, J., Seiferth, O., and Dillmann, B., Patent WO-9605163-A1, 1996.

  163. Spivey, J.J., Patent WO-9959952-A1, 1999.

  164. Kurioka, M., Nakata, K., Jintoku, T., Taniguchi, Y., Takaki, K., and Fujiwara, Y., Chem. Lett., 1995, no. 3, pp. 613–615. https://doi.org/10.1246/cl.1995.244

    Article  Google Scholar 

  165. Bell, A.T., Mukhopadhyay, S., Zerella, M., Sunley, J.G., Gaemers, S., and Muskett, M.J., Patent US 6960682B2, 2005.

  166. Sun, M., Abou-Hamad, E., Rossini, A.J., Zhang, J., Lesage, A., Zhu, H., Pelletier, J., Emsley, L., Caps, V., and Basset, J.M., J. Am. Chem. Soc., 2013, vol. 135, pp. 804−810. https://doi.org/10.1021/ja309966j

    Article  CAS  PubMed  Google Scholar 

  167. Patil, U., Saih, Y., Abou-Hamad, E., Hamieh, A., Pelletier, J.D.A., and Basset, J.M., Chem. Commun., 2014, vol. 50, pp. 12348–12351. https://doi.org/10.1039/C4CC04950K

    Article  CAS  Google Scholar 

  168. Ding, Y.H., Huang, W., and Wang, Y.G., Fuel Process. Technol., 2007, vol. 88, no.4, pp. 319–324. https://doi.org/10.1016/j.fuproc.2004.09.003

    Article  CAS  Google Scholar 

  169. Wilcox, E.M., Roberts, G.W., and Spivey, J.J., Catal. Today, 2003, vol. 88, pp. 83–90. https://doi.org/10.1016/j.cattod.2003.08.007

    Article  CAS  Google Scholar 

  170. Kim, J., Ha, H., Doh, W.H., Ueda, K., Mase, K., Kondoh, H., Mun, B.S., and Kim, H.Y., Nat. Commun., 2020, no. 11, article no. 5649. https://doi.org/10.1038/s41467-020-19398-1

  171. Kwon, Y., Kim, T.Y., Kwon, G., Yi, J., and Lee, H., J. Am. Chem. Soc., 2017, vol. 139, no. 48, pp. 17694−17699. https://doi.org/10.1021/jacs.7b11010

    Article  CAS  PubMed  Google Scholar 

  172. Liu, G., Ariyarathna, I.R., Ciborowski, S.M., Zhu, Zh., Miliordos, E., Miliordos, E., and Bowen, K.H., J. Am. Chem. Soc., 2020, vol. 142, no. 51, pp. 21556–21561. https://doi.org/10.1021/jacs.0c11112

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, R.G., Huang, W., and Wang, B.J., Chin. J. Catal., 2008, vol. 29, no. 9, pp. 913–920. http://www.cjcatal.com/EN/Y2008/V29/I9/913

    Google Scholar 

  174. Huang, W., Xie, K.C., Wang, J.P., Gao, Z.H., Yin, L.H., and Zhu, Q.M., J. Catal., 2001, vol. 201, pp. 100–104. https://doi.org/10.1006/jcat.2001.3223

    Article  CAS  Google Scholar 

  175. Liu, Y., Cui, N., Jia, P., and Huang, W., Catalysts, 2020, vol. 10, no. 1, article no. 131. https://doi.org/10.3390/catal10010131

  176. Huang, W., Sun, W.Z., and Li, F., AICHE J., 2010, vol. 56, no. 5, pp. 1279–1284. https://doi.org/10.1002/aic.12073

    Article  CAS  Google Scholar 

  177. Нuang, W., Zhang, C., Yin, L., and Xie, K., J. Nat. Gas Chem., 2004, vol. 13, no. 2, pp. 113–115. https://doi.org/10.1137/1.9780898718683.ch4

    Article  Google Scholar 

  178. Zhang, P., Yang, X., Hou, X., Mi, J., Yuan, Zh., Huang, J., and Stampfl, C., Catal. Sci. Technol., 2019, vol. 9, no. 2, pp. 6297–6307. https://doi.org/10.1039/C9CY01749F

    Article  CAS  Google Scholar 

  179. Bhaskararao, B., Kim, D.Y., Madridejos, J.M.L., Park, C.M., and Kim, K.S., J. Mater. Chem. A, 2020, no. 8, pp. 14671–14679. https://doi.org/10.1039/D0TA04002A

    Article  CAS  Google Scholar 

  180. Zhang, R.G., Song, L.Z., Liu, H.Y., and Wang, B.J., Appl. Catal. A: General, 2012, vols. 443–444, pp. 50–58. https://doi.org/10.1016/j.apcata.2012.07.024

    Article  CAS  Google Scholar 

  181. Wang, S., Guo, Sh., Luo, Y., Qin, Zh., Chen, Y., Dong, M., Li, J., Fan, W., and Wang, J., Catal. Sci. Technol., 2019, vol. 9, pp. 6613–6626. https://doi.org/10.1039/C9CY01803D

    Article  CAS  Google Scholar 

  182. Panjan, W., Sirijaraensre, J., Warakulwit, C., Pantu, P., and Limtrakul, J., J. Phys. Chem. C, 2012, vol. 12, no. 48, pp. 16588–16594. https://doi.org/10.1039/c2cp42066j

    Article  CAS  Google Scholar 

  183. Montejo-Valencia, B.D., Pagán-Torres, Y.J., Martínez-Iñesta, M.M., and Curet-Arana, M.C., ACS Catal., 2017, vol. 7, no. 10, pp. 6719–6728. https://doi.org/10.1021/acscatal.7b00844

    Article  CAS  Google Scholar 

  184. Carey, J.J. and Nolan, M., Appl. Catal. B: Environmental, 2016, vol. 196, pp. 324–336. https://doi.org/10.1016/j.apcatb.2016.04.004

    Article  CAS  Google Scholar 

  185. Zhao, Y., Cui, Ch., Han, J., Wang, H., Zhu, X., and Ge, Q., J. Am. Chem. Soc., 2016, vol. 138, no. 32, pp. 10191–10198. https://doi.org/10.1021/jacs.6b04446

    Article  CAS  PubMed  Google Scholar 

  186. Zhao, Y., Wang, H., Han, J., Zhu, X., Mei, D., and Ge, Q., ACS Catal., 2019, vol. 9, no. 4, pp. 3187–3197. https://doi.org/10.1021/acscatal.9b00291

    Article  CAS  Google Scholar 

  187. Nie, X., Ren, X., Tu, Ch., Song, Ch., Guo, X., and Chen, J.G., Chem. Commun., 2020, vol. 56, no. 28, pp. 3983–3986. https://doi.org/10.1039/C9CC10055E

    Article  CAS  Google Scholar 

  188. Tu, Ch., Nie, X., and Chen, J.G., ACS Catal., 2021, vol. 11, no. 6, pp. 3384–3401. https://doi.org/10.1021/acscatal.0c05492

    Article  CAS  Google Scholar 

  189. Ye, J., Liu, C.J., Mei, D., and Ge, Q., J. Catal., 2014, vol. 317, pp. 44–53. https://doi.org/10.1016/j.jcat.20

    Article  CAS  Google Scholar 

  190. Martin, O., Martin, A.J., Mondelli, C., Mitchell, S., Segawa, T.F., Hauert, R., Drouilly, C., Curulla-Ferre, D., and Perez-Ramirez, J., Angew. Chem. Int. Ed., 2016, vol. 55, no. 21, pp. 6261−6265. https://doi.org/10.1002/anie.201600943

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Ezhova or N. V. Kolesnichenko.

Ethics declarations

Maksimov A.L. is the Editor-in-Chief of Neftekhimiya/Petroleum Chemistry journal. Other authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhova, N.N., Kolesnichenko, N.V. & Maximov, A.L. Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review). Pet. Chem. 62, 40–61 (2022). https://doi.org/10.1134/S0965544122010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122010078

Keywords:

Navigation