Skip to main content
Log in

Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In view of the growing environmental concerns and the need to involve alternative sources of raw materials in the chemical industry, intensive research efforts in the last decades have focused on carbon dioxide reactions. In this context, the present review discusses prior studies that were aimed at producing commercially important compounds, such as acids, alcohols, organic carbonates, and polycarbonates, in homogeneous catalytic systems that contain transition-metal complexes. Such systems have been traditionally valued for their high activity and selectivity under relatively mild conditions. The review provides systematized information both on CO2 reactions with hydrogen to produce C1 chemicals such as formic acid and methanol, and on CO2 interactions with organics (e.g., olefins, alcohols, and epoxides) to produce valuable chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Hope, A.P., Canty, T.P., Salawitch, R.J., Tribett, W.R., and Bennett, B.F., Paris Climate Agreement: Beacon of Hope, Cham: Springer, 2017, pp. 51–113. https://doi.org/10.1007/978-3-319-46939-3_2

  2. International Energy Agency. CO2 Emissions. https://www.iea.org/reports/global-energy-review-2021/co2-emissions

  3. The Intergovernmental Panel on Climate Change. AR6 Climate Change 2021: The physical science basis. https://www.ipcc.ch/report/ar6/wg1/

  4. Arent, D.J., Wise, A., and Gelman, R., Energy Econom., 2011, vol. 33, pp. 584–593. https://doi.org/10.1016/j.eneco.2010.11.003

    Article  Google Scholar 

  5. Pérez-Fortes, M., Bocin-Dumitriu, A., and Tzimas, E., Energy Proc., 2014, vol. 63, pp. 7968–7975. https://doi.org/10.1016/J.EGYPRO.2014.11.834

    Article  Google Scholar 

  6. Kolbe, H., Annal. Chem. Und Pharm., 1860, vol. 113, pp. 125–127. https://doi.org/10.1002/jlac.18601130120

    Article  Google Scholar 

  7. Liu, Q., Wu, L., Jackstell, R., and Beller, M., Nat. Commun., 2015, vol. 6, pp. 5933. https://doi.org/10.1038/ncomms6933

    Article  CAS  PubMed  Google Scholar 

  8. Leitner, W. and Schmitz, M., Faraday Discuss., 2021, vol. 230, pp. 413–426. https://doi.org/10.1039/D1FD00038A

    Article  CAS  PubMed  Google Scholar 

  9. Aresta, M., Dibenedetto, A., Angelini, A., Chem. Rev., 2014, vol. 114, pp. 1709–1742. https://doi.org/10.1021/cr4002758

    Article  CAS  PubMed  Google Scholar 

  10. Kovačič, Ž., Likozar, B., and Huš, M., ACS Catal., 2020, vol. 10, pp. 14984–15007. https://doi.org/10.1021/acscatal.0c02557

    Article  CAS  Google Scholar 

  11. Nahar, S., Zain, M., Kadhum, A., Hasan, H., and Hasan, Md., Materials, 2017, vol. 10, pp. 629. https://doi.org/10.3390/ma10060629

    Article  CAS  PubMed Central  Google Scholar 

  12. Li, K., An, X., Park, K.H., Khraisheh, M., and Tang, J., Catal. Today, 2014, vol. 224, pp. 3–12. https://doi.org/10.1016/j.cattod.2013.12.006

    Article  CAS  Google Scholar 

  13. Reutemann, W., and Kieczka, H., Formic Acid, Ullmann᾿s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 14–33. https://doi.org/10.1002/14356007.a12_013.pub2

  14. Eppinger, J. and Huang, K.-W., ACS Energy Lett., 2017, vol. 2, pp. 188–195. https://doi.org/10.1021/acsenergylett.6b00574

    Article  CAS  Google Scholar 

  15. Aresta, M. and Dibenedetto, A., Carbon Dioxide Fixation into Organic Compounds, Сarbon Dioxide Recovery and Utilization, Dordrecht: Springer Netherlands, 2003, pp. 211–260. https://doi.org/10.1007/978-94-017-0245-4_9

  16. Inoue, Y., Izumida, H., Sasaki, Y., and Hashimoto, H., Chem. Lett., 1976, vol. 5, pp. 863–864. https://doi.org/10.1246/cl.1976.863

    Article  Google Scholar 

  17. Jessop, P.G., Joó, F., and Tai, C.-C., Coord. Chem. Rev., 2004, vol. 248, pp. 2425–2442. https://doi.org/10.1016/j.ccr.2004.05.019

    Article  CAS  Google Scholar 

  18. Drees, M., Cokoja, M., and Kühn, F.E., ChemCatChem., 2012, vol. 4, pp. 1703–1712. https://doi.org/10.1002/cctc.201200145

    Article  CAS  Google Scholar 

  19. Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W.A., and Kühn, F.E., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 8510–8537. https://doi.org/10.1002/anie.201102010

    Article  CAS  Google Scholar 

  20. Piccirilli, L., Lobo Justo Pinheiro, D., and Nielsen, M., Catalysts, 2020, vol. 10, pp. 773. https://doi.org/10.3390/catal10070773

    Article  CAS  Google Scholar 

  21. Klankermayer, J., Wesselbaum, S., Beydoun, K., and Leitner, W., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 7296–7343. https://doi.org/10.1002/anie.201507458

    Article  CAS  Google Scholar 

  22. Federsel, C., Jackstell, R., and Beller, M., Angew. Chem. Int. Ed., 2010, vol. 49, pp. 6254–6257. https://doi.org/10.1002/anie.201000533

    Article  CAS  Google Scholar 

  23. Zhang, X., Cao, Y., Chen, Q., Shen, C., and He, L., Acta Phys. Chim. Sinica, 2020, vol. 37, article 2007052. https://doi.org/10.3866/PKU.WHXB202007052

  24. Puerta-Oteo, R., Hölscher, M., Jiménez, M.V., Leitner, W., Passarelli, V., and Pérez-Torrente, J.J., Organometallics, 2018, vol. 37, pp. 684–696. https://doi.org/10.1021/acs.organomet.7b00509

    Article  CAS  Google Scholar 

  25. Wang, W.-H. and Hime, Y., InTechOpen, 2012, pp. 249–268. https://doi.org/10.5772/48658

  26. Wang, W.-H., Feng, X., and Bao, M., in Transformation of Carbon Dioxide to Formic Acid and Methanol, Singapore: Springer, 2018, pp. 7–42. https://doi.org/10.1007/978-981-10-3250-9_2

  27. Kumar, A. and Gao, C., ChemCatChem., 2021, vol. 13, pp. 1105–1134. https://doi.org/10.1002/cctc.202001404

    Article  CAS  Google Scholar 

  28. Fujita, E., Muckerman, J.T., and Himeda, Y., Biochim. Biophys. Acta, Bioenerg., 2013, vol. 1827, pp. 1031–1038. https://doi.org/10.1016/j.bbabio.2012.11.004

    Article  CAS  Google Scholar 

  29. Lindner, E., Keppeler, B., and Wegner, P., Inorg. Chim. Acta, 1997, vol. 258, pp. 97–100. https://doi.org/10.1016/S0020-1693(96)05497-7

    Article  CAS  Google Scholar 

  30. Yin, C., Xu, Z., Yang, S.-Y., Ng, S.M., Wong, K.Y., Lin, Z., and Lau, C.P., Organometallics, 2001, vol. 20, pp. 1216–1222. https://doi.org/10.1021/om000944x

    Article  CAS  Google Scholar 

  31. Lau, C.P. and Chen, Y.Z., J. Mol. Catal. A: Chem., 1995, vol. 101, pp. 33–36. https://doi.org/10.1016/1381-1169(95)00068-2

    Article  CAS  Google Scholar 

  32. Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H., and Kasuga, K., Organometallics, 2004, vol. 23, pp. 1480–1483. https://doi.org/10.1021/om030382s

    Article  CAS  Google Scholar 

  33. Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., and Kasuga, K., Organometallics, 2007, vol. 26, pp. 702–712. https://doi.org/10.1021/om060899e

    Article  CAS  Google Scholar 

  34. Hull, J.F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D.J., Muckerman, J.T., and Fujita, E., Nat. Chem., 2012, vol. 4, pp. 383–388. https://doi.org/10.1038/nchem.1295

    Article  CAS  PubMed  Google Scholar 

  35. Ocansey, E., Darkwa, J., and Makhubela, B.C.E., Front. Chem., 2020, vol. 8, pp. 591353. https://doi.org/10.3389/fchem.2020.591353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ocansey, E., Darkwa, J., and Makhubela, B.C.E., Inorg. Chim. Acta, 2021, vol. 523, p. 120389. https://doi.org/10.1016/j.ica.2021.120389

    Article  CAS  Google Scholar 

  37. Tanaka, R., Yamashita, M., and Nozaki, K., J. Am. Chem. Soc., 2009, vol. 131, pp. 14168–14169. https://doi.org/10.1021/ja903574e

    Article  CAS  PubMed  Google Scholar 

  38. Filonenko, G.A., Conley, M.P., Copéret, C., Lutz, M., Hensen, E.J.M., and Pidko, E.A., ACS Catal., 2013, vol. 3, pp. 2522–2526. https://doi.org/10.1021/cs4006869

    Article  CAS  Google Scholar 

  39. Filonenko, G.A., Hensen, E.J.M., and Pidko, E.A., Catal. Sci. Technol., 2014, vol. 4, pp. 3474–3485. https://doi.org/10.1039/C4CY00568F

    Article  CAS  Google Scholar 

  40. Filonenko, G.A., van Putten, R., Schulpen, E.N., Hensen, E.J.M., and Pidko, E.A., ChemCatChem., 2014, vol. 6, pp. 1526–1530. https://doi.org/10.1002/cctc.201402119

    Article  CAS  Google Scholar 

  41. Schmeier, T.J., Dobereiner, G.E., Crabtree, R.H., and Hazari, N., J. Am. Chem. Soc., 2011, vol. 133, pp. 9274–9277. https://doi.org/10.1021/ja2035514

    Article  CAS  PubMed  Google Scholar 

  42. Langer, R., Diskin-Posner, Y., Leitus, G., Shimon, L.J.W., Ben-David, Y., and Milstein, D., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 9948–9952. https://doi.org/10.1002/anie.201104542

    Article  CAS  Google Scholar 

  43. Ziebart, C., Federsel, C., Anbarasan, P., Jackstell, R., Baumann, W., Spannenberg, A., and Beller, M., J. Am. Chem. Soc., 2012, vol. 134, pp. 20701–20704. https://doi.org/10.1021/ja307924a

    Article  CAS  PubMed  Google Scholar 

  44. Coufourier, S., Gaignard Gaillard, Q., Lohier, J.-F., Poater, A., Gaillard, S., and Renaud, J.-L., ACS Catal., 2020, vol. 10, pp. 2108–2116. https://doi.org/10.1021/acscatal.9b04340

    Article  CAS  Google Scholar 

  45. Jeletic, M.S., Mock, M.T., Appel, A.M., and Linehan, J.C., J. Am. Chem. Soc., 2013, vol. 135, pp. 11533–11536. https://doi.org/10.1021/ja406601v

    Article  CAS  PubMed  Google Scholar 

  46. Federsel, C., Ziebart, C., Jackstell, R., Baumann, W., and Beller, M., Chem.-Eur. J., 2012, vol. 18, pp. 72–75. https://doi.org/10.1002/chem.201101343

    Article  CAS  PubMed  Google Scholar 

  47. Jeletic, M.S., Helm, M.L., Hulley, E.B., Mock, M.T., Appel, A.M., and Linehan, J.C., ACS Catal., 2014, vol. 4, pp. 3755–3762. https://doi.org/10.1021/cs5009927

    Article  CAS  Google Scholar 

  48. Tsai, J.C. and Nicholas, K.M., J. Am. Chem. Soc., 1992, vol. 114, pp. 5117–5124. https://doi.org/10.1021/ja00039a024

    Article  CAS  Google Scholar 

  49. Hayashi, H., Ogo, S., and Fukuzumi, S., Chem. Commun., 2004, no. 23, pp. 2714. https://doi.org/10.1039/b411633j

    Article  CAS  Google Scholar 

  50. Ogo, S., Kabe, R., Hayashi, H., Harada, R., and Fukuzumi, S., Dalton Trans., 2006, no. 39, p. 4657. https://doi.org/10.1039/b607993h

    Article  CAS  Google Scholar 

  51. Zhao, G. and Joó, F., Catal. Commun., 2011, vol. 14, pp. 74–76. https://doi.org/10.1016/j.catcom.2011.07.017

    Article  CAS  Google Scholar 

  52. Moret, S., Dyson, P.J., and Laurenczy, G., Nat. Commun., 2014, vol. 5, pp. 4017. https://doi.org/10.1038/ncomms5017

    Article  CAS  PubMed  Google Scholar 

  53. Rohmann, K., Kothe, J., Haenel, M.W., Englert, U., Hölscher, M., and Leitner, W., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 8966–8969. https://doi.org/10.1002/anie.201603878

    Article  CAS  Google Scholar 

  54. Lu, S.-M., Wang, Z., Li, J., Xiao, J., and Li, C., Green Chem., 2016, vol. 18, pp. 4553–4558. https://doi.org/10.1039/C6GC00856A

    Article  CAS  Google Scholar 

  55. Yasaka, Y., Wakai, C., Matubayasi, N., and Nakahara, M., J. Phys. Chem. A, 2010, vol. 114, pp. 3510–3515. https://doi.org/10.1021/jp908174s

    Article  CAS  PubMed  Google Scholar 

  56. Weilhard, A., Qadir, M.I., Sans, V., and Dupont, J., ACS Catal., 2018, vol. 8, pp. 1628–1634. https://doi.org/10.1021/acscatal.7b03931

    Article  CAS  Google Scholar 

  57. Weilhard, A., Argent, S.P., and Sans, V., Nat. Commun., 2021, vol. 12, pp. 231. https://doi.org/10.1038/s41467-020-20291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weilhard, A., Salzmann, K., Navarro, M., Dupont, J., Albrecht, M., and Sans, V., J. Catal., 2020, vol. 385, pp. 1–9. https://doi.org/10.1016/j.jcat.2020.02.027

    Article  CAS  Google Scholar 

  59. Ezhova, N.N., Kolesnichenko, N.V., Bulygin, A.V., Slivinskii, E.V., and Han, S., Russ. Chem. Bull., 2002, vol. 51, no. 12, pp. 2165–216.

    Article  CAS  Google Scholar 

  60. Ezhova, N.N., Kolesnichenko, N.V., Bulygin, A.V., Kremleva, E.V., Filatova, M.P., and Slivinskiǐ, E.V., Petrol. Chem., 2004, vol. 44, no. 1, pp. 24–32.

    Google Scholar 

  61. Karakhanov, E.A., Egazar′yants, S.V., Kardashev, S.V., Maksimov, A.L., Minos′yants, S.S., and Sedykh, A.D., Petrol. Chem., 2001, vol. 41, no. 4, pp. 268–27.

    Google Scholar 

  62. Egazar′yants, S.V., Karakhanov, E.A., Kardashev, S.V., Maksimov, A.L., and Minos′yants, S.S., Petrol. Chem., 2002, vol. 42, no. 6, pp. 414–417.

    Google Scholar 

  63. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Surya Prakash, G.K., Green Chem., 2016, vol. 18, pp. 5831–5838. https://doi.org/10.1039/C6GC01165A

    Article  CAS  Google Scholar 

  64. Scott, M., Blas Molinos, B., Westhues, C., Franciò, G., and Leitner, W., ChemSusChem., 2017, vol. 10, pp. 1085–1093. https://doi.org/10.1002/cssc.201601814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Z., Liu, S., Hou, M., Yang, G., and Han, B., Green Chem., 2021, vol. 23, pp. 1978–1982. https://doi.org/10.1039/D0GC04233A

    Article  CAS  Google Scholar 

  66. Patent WO 2010149507A2, 2010.

  67. Schaub, T. and Paciello, R.A., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 7278–7282. https://doi.org/10.1002/anie.201101292

    Article  CAS  Google Scholar 

  68. Kreimeyer, A., Angew. Chem. Int. Ed., 2013, vol. 52, pp. 147–154. https://doi.org/10.1002/anie.201208912

    Article  CAS  Google Scholar 

  69. Patent WO 2013050367A2., 2013.

  70. Wesselbaum, S., Hintermair, U., and Leitner, W., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 8585–8588. https://doi.org/10.1002/anie.201203185

    Article  CAS  Google Scholar 

  71. Patent WO 2012095345A1, 2012.

  72. Song, Q.-W., Zhou, Z.-H., and He, L.-N., Green Chem., 2017, vol. 19, pp. 3707–3728. https://doi.org/10.1039/C7GC00199A

    Article  CAS  Google Scholar 

  73. Roode-Gutzmer, Q.I., Kaiser, D., and Bertau, M., ChemBioEng Rev., 2019, vol. 6, pp. 209–236. https://doi.org/10.1002/cben.201900012

    Article  CAS  Google Scholar 

  74. Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, pp. 3703. https://doi.org/10.1039/c1cs15008a

    Article  CAS  PubMed  Google Scholar 

  75. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G.K., and Olah, G.A., Chem. Soc. Rev., 2014, vol. 43, pp. 7995–8048. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  76. Klankermayer, J., Wesselbaum, S., Beydoun, K., and Leitner, W., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 7296–7343. https://doi.org/10.1002/anie.201507458

    Article  CAS  Google Scholar 

  77. Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y., and Zhang, T., Chem. Soc. Rev., 2020, vol. 49, pp. 1385–1413. https://doi.org/10.1039/C9CS00614A

    Article  CAS  PubMed  Google Scholar 

  78. Bowker, M., ChemCatChem., 2019, vol. 11, pp. 4238–4246. https://doi.org/10.1002/cctc.201900401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guil-López, R., Mota, N., Llorente, J., Millán, E., Pawelec, B., Fierro, J.L.G., and Navarro, R.M., Materials, 2019, vol. 12, pp. 3902. https://doi.org/10.3390/ma12233902

    Article  CAS  PubMed Central  Google Scholar 

  80. Li, Y.-N., Ma, R., He, L.-N., and Diao, Z.-F., Catal. Sci. Technol., 2014, vol. 4, pp. 1498–1512. https://doi.org/10.1039/C3CY00564J

    Article  CAS  Google Scholar 

  81. Wang, W.-H., Himeda, Y., Muckerman, J.T., Manbeck, G.F., and Fujita, E., Chem. Rev., 2015, vol. 115, pp. 12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  PubMed  Google Scholar 

  82. Kar, S., Kothandaraman, J., Goeppert, A., and Prakash, G.K.S., J. CO2 Util., 2018, vol. 23, pp. 212–218. https://doi.org/10.1016/j.jcou.2017.10.023

    Article  CAS  Google Scholar 

  83. Wang, W.-H., Feng, X., and Bao, M., in Transformation of Carbon Dioxide to Formic Acid and Methanol, Singapore: Springer, 2018, pp. 53–87. https://doi.org/10.1007/978-981-10-3250-9_4

  84. Schmitz, M., Erken, C., Ohligschläger, A., Schnoor, J.-K., Westhues, N.F., Klankermayer, J., Leitner, W., and Liauw, M.A., Chem. Ing. Tech., 2018, vol. 90, pp. 1476–1488. https://doi.org/10.1002/cite.201800053

    Article  CAS  Google Scholar 

  85. Xie, S., Zhang, W., Lan, X., and Lin, H., ChemSusChem., 2020, vol. 13, pp. 6141–6159. https://doi.org/10.1002/cssc.202002087

    Article  CAS  PubMed  Google Scholar 

  86. Kumar, A. and Gao, C., ChemCatChem., 2021, vol. 13, pp. 1105–1134. https://doi.org/10.1002/cctc.202001404

    Article  CAS  Google Scholar 

  87. Sordakis, K., Tang, C., Vogt, L.K., Junge, H., Dyson, P.J., Beller, M., and Laurenczy, G., Chem. Rev., 2018, vol. 118, pp. 372–433. https://doi.org/10.1021/acs.chemrev.7b00182

    Article  CAS  PubMed  Google Scholar 

  88. Tominaga, K., Sasaki, Y., Kawai, M., Watanabe, T., and Saito, M., J. Chem. Soc., Chem. Commun., 1993, no. 7, pp. 629–631. https://doi.org/10.1039/c39930000629

    Article  Google Scholar 

  89. Tominaga, K., Sasaki, Y., Watanabe, T., and Saito, M., Bull. Chem. Soc. Jpn., 1995, vol. 68, pp. 2837–2842. https://doi.org/10.1246/bcsj.68.2837

    Article  CAS  Google Scholar 

  90. Wesselbaum, S., vom Stein, T., Klankermayer, J., and Leitner, W., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 7499–7502. https://doi.org/10.1002/anie.201202320

    Article  CAS  Google Scholar 

  91. Wesselbaum, S., Moha, V., Meuresch, M., Brosinski, S., Thenert, K.M., Kothe, J., Stein, T., Englert, U., Hölscher, M., Klankermayer, J., and Leitner, W., Chem. Sci., 2015, vol. 6, pp. 693–704. https://doi.org/10.1039/C4SC02087A

    Article  CAS  PubMed  Google Scholar 

  92. Bai, S.-T., de Smet, G., Liao, Y., Sun, R., Zhou, C., Beller, M., Maes, B.U.W., and Sels, B.F., Chem. Soc. Rev., 2021, vol. 50, pp. 4259–4298. https://doi.org/10.1039/D0CS01331E

    Article  CAS  PubMed  Google Scholar 

  93. Schieweck, B.G., Jürling-Will, P., and Klankermayer, J., ACS Catal., 2020, vol. 10, pp. 3890–3894. https://doi.org/10.1021/acscatal.9b04977

    Article  CAS  Google Scholar 

  94. Huff, C.A. and Sanford, M.S., J. Am. Chem. Soc., 2011, vol. 133, pp. 18122–18125 https://doi.org/10.1021/ja208760j

    Article  CAS  PubMed  Google Scholar 

  95. Chu, W.-Y., Culakova, Z., Wang, B.T., and Goldberg, K.I., ACS Catal., 2019, vol. 9, pp. 9317–9326. https://doi.org/10.1021/acscatal.9b02280

    Article  CAS  Google Scholar 

  96. Rezayee, N.M., Huff, C.A., and Sanford, M.S., J. Am. Chem. Soc., 2015, vol. 137, pp. 1028–1031 https://doi.org/10.1021/ja511329m

    Article  CAS  PubMed  Google Scholar 

  97. Khusnutdinova, J.R., Garg, J.A., and Milstein, D., ACS Catal., 2015, vol. 5, pp. 2416–2422. https://doi.org/10.1021/acscatal.5b00194

    Article  CAS  Google Scholar 

  98. Zhang, L., Han, Z., Zhao, X., Wang, Z., and Ding, K., Angew. Chem. Int. Ed., 2015, vol. 54, pp. 6186–6189. https://doi.org/10.1002/anie.201500939

    Article  CAS  Google Scholar 

  99. Everett, M. and Wass, D.F., Chem. Commun., 2017, vol. 53, no. 68, pp. 9502–9504. https://doi.org/10.1039/C7CC04613H

    Article  CAS  Google Scholar 

  100. Kar, S., Sen, R., Goeppert, A., and Prakash, G.K.S., J. Am. Chem. Soc., 2018, vol. 140, pp. 1580–1583. https://doi.org/10.1021/jacs.7b12183

    Article  CAS  PubMed  Google Scholar 

  101. Kar, S., Sen, R., Kothandaraman, J., Goeppert, A., Chowdhury, R., Munoz, S.B., Haiges, R., and Prakash, G.K.S., J. Am. Chem. Soc., 2019, vol. 141, pp. 3160–3170. https://doi.org/10.1021/jacs.8b12763

    Article  CAS  PubMed  Google Scholar 

  102. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Prakash, G.K.S., J. Am. Chem. Soc., 2016, vol. 138, pp. 778–781. https://doi.org/10.1021/jacs.5b12354

    Article  CAS  PubMed  Google Scholar 

  103. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Surya Prakash, G.K., Green Chem., 2016, vol. 18, pp. 5831–5838. https://doi.org/10.1039/C6GC01165A

    Article  CAS  Google Scholar 

  104. Yoshimura, A., Watari, R., Kuwata, S., and Kayaki, Y., Eur. J. Inorg. Chem., 2019, vol. 2019, pp. 2375–2380. https://doi.org/10.1002/ejic.201900322

    Article  CAS  Google Scholar 

  105. Kar, S., Goeppert, A., and Prakash, G.K.S., ChemSusChem., 2019, vol. 12, pp. 3172–3177. https://doi.org/10.1002/cssc.201900324

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, F.-H., Liu, C., Li, W., Tian, G.-L., Xie, J.-H., and Zhou, Q.-L., Chin. J. Chem., 2018, vol. 36, pp. 1000–1002. https://doi.org/10.1002/cjoc.201800278

    Article  CAS  Google Scholar 

  107. Westhues, N. and Klankermayer, J., ChemCatChem., 2019, vol. 11, pp. 3371–3375. https://doi.org/10.1002/cctc.201900932

    Article  CAS  Google Scholar 

  108. Sen, R., Goeppert, A., Kar, S., and Prakash, G.K.S., J. Am. Chem. Soc., 2020, vol. 142, pp. 4544–4549. https://doi.org/10.1021/jacs.9b12711

    Article  CAS  PubMed  Google Scholar 

  109. Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L.J.W., and Milstein, D., Nat. Chem., 2011, vol. 3, pp. 609–614. https://doi.org/10.1038/nchem.1089

    Article  CAS  PubMed  Google Scholar 

  110. Balaraman, E., Ben-David, Y., and Milstein, D., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 11702–11705. https://doi.org/10.1002/anie.201106612

    Article  CAS  Google Scholar 

  111. Yang, X., ACS Catal., 2012, vol. 2, pp. 964–970. https://doi.org/10.1021/cs3000683

    Article  CAS  Google Scholar 

  112. Miller, A.J.M., Heinekey, D.M., Mayer, J.M., and Goldberg, K.I., Angew. Chem. Int. Ed., 2013, vol. 52, pp. 3981–3984. https://doi.org/10.1002/anie.201208470

    Article  CAS  Google Scholar 

  113. Savourey, S., Lefèvre, G., Berthet, J.-C., Thuéry, P., Genre, C., and Cantat, T., Angew. Chem. Int. Ed., 2014, vol. 53, pp. 10466–10470. https://doi.org/10.1002/anie.201405457

    Article  CAS  Google Scholar 

  114. Neary, M.C. and Parkin, G., Chem. Sci., 2015, vol. 6, pp. 1859–1865. https://doi.org/10.1039/C4SC03128H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sordakis, K., Tsurusaki, A., Iguchi, M., Kawanami, H., Himeda, Y., and Laurenczy, G., Chem.–Eur. J., 2016, vol. 22, pp. 15605–15608. https://doi.org/10.1002/chem.201603407

    Article  CAS  PubMed  Google Scholar 

  116. Tsurusaki, A., Murata, K., Onishi, N., Sordakis, K., Laurenczy, G., and Himeda, Y., ACS Catal., 2017, vol. 7, pp. 1123–1131. https://doi.org/10.1021/acscatal.6b03194

    Article  CAS  Google Scholar 

  117. Sordakis, K., Tsurusaki, A., Iguchi, M., Kawanami, H., Himeda, Y., and Laurenczy, G., Green Chem., 2017, vol. 19, pp. 2371–2378. https://doi.org/10.1039/C6GC03359H

    Article  CAS  Google Scholar 

  118. Sasayama, A.F., Moore, C.E., and Kubiak, C.P., Dalton Trans., 2016, vol. 45, no. 6, pp. 2436–2439. https://doi.org/10.1039/C5DT04606H

    Article  CAS  PubMed  Google Scholar 

  119. Rayder, T.M., Adillon, E.H., Byers, J.A., and Tsung, C.-K., Chem., 2020, vol. 6, pp. 1742–1754. https://doi.org/10.1016/j.chempr.2020.04.008

    Article  CAS  Google Scholar 

  120. Kar, S., Goeppert, A., Kothandaraman, J., and Prakash, G.K.S., ACS Catal., 2017, vol. 7, pp. 6347–6351. https://doi.org/10.1021/acscatal.7b02066

    Article  CAS  Google Scholar 

  121. Mandal, S.C., Rawat, K.S., Nandi, S., and Pathak, B., Catal. Sci. Technol., 2019, vol. 9, pp. 1867–1878. https://doi.org/10.1039/C9CY00114J

    Article  CAS  Google Scholar 

  122. Ribeiro, A.P.C., Martins, L.M.D.R.S., and Pombeiro, A.J.L., Green Chem., 2017, vol. 19, pp. 4811–4815. https://doi.org/10.1039/C7GC01993A

    Article  CAS  Google Scholar 

  123. Liu, X., de Vries, J.G., and Werner, T., Green Chem., 2019, vol. 21, pp. 5248–5255. https://doi.org/10.1039/C9GC02052G

    Article  CAS  Google Scholar 

  124. Lane, E.M., Zhang, Y., Hazari, N., and Bernskoetter, W.H., Organometallics, 2019, vol. 38, pp. 3084–3091. https://doi.org/10.1021/acs.organomet.9b00413

    Article  CAS  Google Scholar 

  125. Schneidewind, J., Adam, R., Baumann, W., Jackstell, R., and Beller, M., Angew. Chem. Int. Ed., 2017, vol. 56, pp. 1890–1893. https://doi.org/10.1002/anie.201609077

    Article  CAS  Google Scholar 

  126. Scharnagl, F.K., Hertrich, M.F., Neitzel, G., Jackstell, R., and Beller, M., Adv. Syn. Catal., 2018, no. 2, pp. 374–379. https://doi.org/10.1002/adsc.201801314

    Article  CAS  Google Scholar 

  127. Yan, X., Ge, H., and Yang, X., Inorg Chem., 2019, vol. 58, pp. 5494–5502. https://doi.org/10.1021/acs.inorgchem.8b03214

    Article  CAS  PubMed  Google Scholar 

  128. Chen, X., Ge, H., and Yang, X., Catal. Sci. Technol., 2017, vol. 7, pp. 348–355. https://doi.org/10.1039/C6CY01551D

    Article  CAS  Google Scholar 

  129. Ge, H., Chen, X., and Yang, X., Chem.–Eur. J., 2017, vol. 23, pp. 8850–8856. https://doi.org/10.1002/chem.201701200

    Article  CAS  PubMed  Google Scholar 

  130. Kaithal, A., Hölscher, M., and Leitner, W., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 13449–13453. https://doi.org/10.1002/anie.201808676

    Article  CAS  Google Scholar 

  131. Kumar, A., Janes, T., and Espinosa-Jalapa, N.A., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 12076–12080. https://doi.org/10.1002/anie.201806289

    Article  CAS  Google Scholar 

  132. Zubar, V., Lebedev, Y., Azofra, L.M., Cavallo, L., El-Sepelgy, O., and Rueping, M., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 13439–13443. https://doi.org/10.1002/anie.201805630

    Article  CAS  Google Scholar 

  133. Ye, R.-P., Ding, J., Gong, W., Argyle, M.D., Zhong, Q., Wang, Y., Russell, C.K., Xu, Z., Russell, A.G., Li, Q., Fan, M., and Yao, Y.-G., Nat. Commun., 2019, vol. 10, pp. 5698. https://doi.org/10.1038/s41467-019-13638-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tominaga, K.-I., Sasaki, Y., Saito, M., Hagihara, K., and Watanabe, T., J. Mol. Catal., 1994, vol. 89, pp. 51–55. https://doi.org/10.1016/0304-5102(93)E0287-Q

    Article  CAS  Google Scholar 

  135. Patent US 2014243435A1, 2014.

  136. Han, Z., Rong, L., Wu, J., Zhang, L., Wang, Z., and Ding, K., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 13041–13045. https://doi.org/10.1002/anie.201207781

    Article  CAS  Google Scholar 

  137. Qian, Q., Cui, M., He, Z., Wu, C., Zhu, Q., Zhang, Z., Ma, J., Yang, G., Zhang, J., and Han, B., Chem. Sci., 2015, vol. 6, pp. 5685–5689. https://doi.org/10.1039/C5SC02000J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cui, M., Qian, Q., He, Z., Zhang, Z., Ma, J., Wu, T., Yang, G., and Han, B., Chem. Sci., 2016, vol. 7, pp. 5200–5205. https://doi.org/10.1039/C6SC01314G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, J., Qian, Q., Cui, M., Chen, C., Liu, S., and Han, B., Green Chem., 2017, vol. 19, pp. 4396–4401. https://doi.org/10.1039/C7GC01887H

    Article  CAS  Google Scholar 

  140. Franke, R., Selent, D., and Börner, A., Chem. Rev., 2012, vol. 112, pp. 5675–5732. https://doi.org/10.1021/cr3001803

    Article  CAS  PubMed  Google Scholar 

  141. Feng, S., Song, X., Ren, Z., and Ding, Y., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402

    Article  CAS  Google Scholar 

  142. Wu, X.-F. and Zheng, F., Top. Curr. Chem., 2017, vol. 375, pp. 4. https://doi.org/10.1007/s41061-016-0091-6

    Article  CAS  Google Scholar 

  143. Wang, L., Sun, W., and Liu, C., Chin. J. Chem., 2018, vol. 36, pp. 353–362. https://doi.org/10.1002/cjoc.201700746

    Article  CAS  Google Scholar 

  144. Gorbunov, D.N., Volkov, A.V., Kardasheva, Yu.S., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2015, vol. 55, no. 8, pp. 587–603. https://doi.org/10.1134/S096554411508004

    Article  CAS  Google Scholar 

  145. Zhuchkov, D.P., Nenasheva, M.V., Terenina, M.V., Kardasheva, Yu.S., Gorbunov, D.N., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, pp. 1–14. https://doi.org/10.1134/S096554412101001

    Article  CAS  Google Scholar 

  146. Gorbunov, D., Nenasheva, M., Naranov, E., Maximov, A., Rosenberg, E., and Karakhanov, E., Appl. Catal. A: Gen., 2021, vol. 623, p. 118266. https://doi.org/10.1016/j.apcata.2021.118266

    Article  CAS  Google Scholar 

  147. Gorbunov, D., Safronova, D., Kardasheva, Y., Maximov, A., Rosenberg, E., and Karakhanov, E., ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 26566–26575. https://doi.org/10.1021/acsami.8b02797

    Article  CAS  PubMed  Google Scholar 

  148. Gorbunov, D.N., Nenasheva, M.V., Kardasheva, Yu.S., and Karakhanov, E.A., Russ. Chem. Bull., 2020, vol. 69, no. 4, pp. 625–634. https://doi.org/10.1007/s11172-020-2810-y

    Article  CAS  Google Scholar 

  149. Gorbunov, D., Nenasheva, M., Terenina, M., Kardasheva, Y., Maksimov, A., and Karakhanov, E., ChemistrySelect., 2020, vol. 5, pp. 6407–6414. https://doi.org/10.1002/slct.202001327

    Article  CAS  Google Scholar 

  150. Wang, X., Ping, W., Ebadi, A.G., Majedi, S., Hossaini, Z., and Toughani, M., J. CO2 Util., 2021, vol. 50, pp. 101592. https://doi.org/10.1016/j.jcou.2021.101592

    Article  CAS  Google Scholar 

  151. Tominaga, K. and Sasaki, Y., Catal. Commun., 2000, vol. 1, pp. 1–3. https://doi.org/10.1016/S1566-7367(00)00006-6

    Article  CAS  Google Scholar 

  152. Tominaga, K. and Sasaki, Y., J. Mol. Catal. A: Chem., 2004, vol. 220, pp. 159–165. https://doi.org/10.1016/j.molcata.2004.06.009

    Article  CAS  Google Scholar 

  153. Tominaga, K. and Sasaki, Y., Chem. Lett., 2004, vol. 33, pp. 14–15. https://doi.org/10.1246/cl.2004.14

    Article  CAS  Google Scholar 

  154. Tominaga, K. and Sasaki, Y., Stud. Surface Sci. Catal., 2004, vol. 153, pp. 227–232. https://doi.org/10.1016/S0167-2991(04)80253-2

    Article  CAS  Google Scholar 

  155. Tominaga, K., Catal. Today, 2006, vol. 115, pp. 70–72. https://doi.org/10.1016/j.cattod.2006.02.019

    Article  CAS  Google Scholar 

  156. Torres, G.M., Frauenlob, R., Franke, R., and Börner, A., Catal. Sci. Technol., 2015, vol. 5, pp. 34–54. https://doi.org/10.1039/C4CY01131G

    Article  CAS  Google Scholar 

  157. Jääskeläinen, S. and Haukka, M., Appl. Catal. A: Gen., 2003, vol. 247, pp. 95–100. https://doi.org/10.1016/S0926-860X(03)00063-2

    Article  CAS  Google Scholar 

  158. Fujita, S., Okamura, S., Akiyama, Y., and Arai, M., Int. J. Mol. Sci., 2007, vol. 8, pp. 749–759. https://doi.org/10.3390/i8080749

    Article  CAS  PubMed Central  Google Scholar 

  159. Ali, M., Gual, A., Ebeling, G., and Dupont, J., ChemCatChem., 2014, vol. 6, pp. 2224–2228. https://doi.org/10.1002/cctc.201402226

    Article  CAS  Google Scholar 

  160. Zhang, X., Tian, X., Shen, C., Xia, C., and He, L., ChemCatChem., 2019, vol. 11, pp. 1986–1992. https://doi.org/10.1002/cctc.201802091

    Article  CAS  Google Scholar 

  161. Kontkanen, M.-L., Oresmaa, L., Moreno, M.A., Jänis, J., Laurila, E., and Haukka, M., Appl. Catal. A: Gen., 2009, vol. 365, pp. 130–134. https://doi.org/10.1016/j.apcata.2009.06.006

    Article  CAS  Google Scholar 

  162. Liu, Q., Wu, L., Fleischer, I., Selent, D., Franke, R., Jackstell, R., and Beller, M., Chem.–Eur. J., 2014, vol. 20, pp. 6888–6894. https://doi.org/10.1002/chem.201400358

    Article  CAS  PubMed  Google Scholar 

  163. Fritschi, S., Korth, W., Julis, J., Kruse, D., Hahn, H., Franke, R., Fleischer, I., Chowdhury, A.D., Weding, N., Jackstell, R., Beller, M., and Jess, A., Chem. Ing. Tech., 2015, vol. 87, pp. 1313–1326. https://doi.org/10.1002/cite.201400158

    Article  CAS  Google Scholar 

  164. Srivastava, V.K. and Eilbracht, P., Catal. Commun., 2009, vol. 10, pp. 1791–1795. https://doi.org/10.1016/j.catcom.2009.05.019

    Article  CAS  Google Scholar 

  165. Ali, M., Gual, A., Ebeling, G., and Dupont, J., ChemSusChem., 2016, vol. 9, pp. 2129–2134. https://doi.org/10.1002/cssc.201600385

    Article  CAS  PubMed  Google Scholar 

  166. Hua, K., Liu, X., Wei, B., Shao, Z., Deng, Y., Zhong, L., Wang, H., and Sun, Y., Green Chem., 2021, vol. 23, pp. 8040–8046. https://doi.org/10.1039/D0GC03913F

    Article  CAS  Google Scholar 

  167. Gui, Y.-Y., Hu, N., Chen, X.-W., Liao, L., Ju, T., Ye, J.-H., Zhang, Z., Li, J., and Yu, D.-G., J. Am. Chem. Soc., 2017, vol. 139, pp. 17011–17014. https://doi.org/10.1021/jacs.7b10149

    Article  CAS  PubMed  Google Scholar 

  168. Li, W., Chen, L., Lin, Z., Man, S., Qin, X., Lyu, Y., Li, C., and Leng, G., Inorg Chem., 2020, vol. 59, pp. 9667–9682. https://doi.org/10.1021/acs.inorgchem.0c00861

    Article  CAS  PubMed  Google Scholar 

  169. Tani, Y., Kuga, K., Fujihara, T., Terao, J., and Tsuji, Y., Chem. Commun., 2015, vol. 51, no. 65, pp. 13020–13023. https://doi.org/10.1039/C5CC03932K

    Article  CAS  Google Scholar 

  170. Ren, X., Zheng, Z., Zhang, L., Wang, Z., Xia, C., and Ding, K., Angew. Chem. Int. Ed., 2017, vol. 56, pp. 310–313. https://doi.org/10.1002/anie.201608628

    Article  CAS  Google Scholar 

  171. Bertleff, W., Roeper, M., and Sava, X., Carbonylation, in: Ullmann᾿s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 73–98. https://doi.org/10.1002/14356007.a05_217.pub2

  172. Lapidus, A.L., Pirozhkov, S.D., and Koryakin, A.A., Bull. Acad. Sci. USSR Div. Chem. Sci., 1978, vol. 27, pp. 2513–2515. https://doi.org/10.1007/BF0094111

    Article  Google Scholar 

  173. Ostapowicz, T.G., Schmitz, M., Krystof, M., and Klankermayer, J., , Angew. Chem. Int. Ed., 2013, vol. 52, pp. 12119–12123. https://doi.org/10.1002/anie.201304529

    Article  CAS  Google Scholar 

  174. Wu, L., Liu, Q., Fleischer, I., Jackstell, R., and Beller, M., Nat. Commun., 2014, vol. 5, pp. 3091. https://doi.org/10.1038/ncomms4091

    Article  CAS  PubMed  Google Scholar 

  175. Stouten, S.C., Noël, T., Wang, Q., Beller, M., and Hessel, V., Catal. Sci. Technol., 2016, vol. 6, pp. 4712–4717. https://doi.org/10.1039/C5CY01883H

    Article  CAS  Google Scholar 

  176. Zhang, X., Shen, C., Xia, C., Tian, X., and He, L., Green Chem., 2018, vol. 20, pp. 5533–5539. https://doi.org/10.1039/C8GC02289E

    Article  CAS  Google Scholar 

  177. Williams, C.M., Johnson, J.B., and Rovis, T., J. Am. Chem. Soc., 2008, vol. 130, pp. 14936–14937. https://doi.org/10.1021/ja8062925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, S., Yuan, W., and Ma, S., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 2578–2582. https://doi.org/10.1002/anie.201007128

    Article  CAS  Google Scholar 

  179. Greenhalgh, M.D. and Thomas, S.P., J. Am. Chem. Soc., 2012, vol. 134, pp. 11900–11903. https://doi.org/10.1021/ja3045053

    Article  CAS  PubMed  Google Scholar 

  180. Gaydou, M., Moragas, T., Juliá-Hernández, F., and Martin, R., J. Am. Chem. Soc., 2017, vol. 139, pp. 12161–12164. https://doi.org/10.1021/jacs.7b07637

    Article  CAS  PubMed  Google Scholar 

  181. Fujihara, T., Xu, T., Semba, K., Terao, J., and Tsuji, Y., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 523–527. https://doi.org/10.1002/anie.201006292

    Article  CAS  Google Scholar 

  182. Gehrtz, P.H., Hirschbeck, V., and Fleischer, I., Chem. Commun., 2015, vol. 51, no. 63, pp. 12574–12577. https://doi.org/10.1039/C5CC05012J

    Article  CAS  Google Scholar 

  183. Frank, M., Superabsorbents, in Ullmann᾿s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 213–232. https://doi.org/10.1002/14356007.f25_f01

  184. Wang, X., Wang, H., and Sun, Y., Chem., 2017, vol. 3, pp. 211–228. https://doi.org/10.1016/j.chempr.2017.07.006

    Article  CAS  Google Scholar 

  185. Schaub, T., in Organometallics in Process Chemistry, Cham: Springer, 2018, pp. 253–270. https://doi.org/10.1007/3418_2018_21

  186. Lejkowski, M.L., Lindner, R., Kageyama, T., Bódizs, G.É., Plessow, P.N., Müller, I.B., Schäfer, A., Rominger, F., Hofmann, P., Futter, C., Schunk, S.A., and Limbach, M., Chem.–Eur. J., 2012, vol. 18, pp. 14017–14025. https://doi.org/10.1002/chem.201201757

    Article  CAS  PubMed  Google Scholar 

  187. Huguet, N., Jevtovikj, I., Gordillo, A., Lejkowski, M.L., Lindner, R., Bru, M., Khalimon, A.Y., Rominger, F., Schunk, S.A., Hofmann, P., and Limbach, M., Chem.–Eur. J., 2014, vol. 20, pp. 16858–16862. https://doi.org/10.1002/chem.201405528

    Article  CAS  PubMed  Google Scholar 

  188. Vavasori, A., Calgaro, L., Pietrobon, L., and Ronchin, L., Pure Appl. Chem., 2018, vol. 90, pp. 315–326. https://doi.org/10.1515/pac-2017-0706

    Article  CAS  Google Scholar 

  189. Stieber, S.C.E., Huguet, N., Kageyama, T., Jevtovikj, I., Ariyananda, P., Gordillo, A., Schunk, S.A., Rominger, F., Hofmann, P., and Limbach, M., Chem. Commun., 2015, vol. 51, no. 54, pp. 10907–10909. https://doi.org/10.1039/C5CC01932J

    Article  CAS  Google Scholar 

  190. Manzini, S., Cadu, A., Schmidt, A.-C., Huguet, N., Trapp, O., Paciello, R., and Schaub, T., ChemCatChem., 2017, vol. 9, pp. 2269–2274. https://doi.org/10.1002/cctc.201601150

    Article  CAS  Google Scholar 

  191. Manzini, S., Huguet, N., Trapp, O., Paciello, R.A., and Schaub, T., Catal. Today, 2017, vol. 281, pp. 379–386. https://doi.org/10.1016/j.cattod.2016.03.025

    Article  CAS  Google Scholar 

  192. Knopf, I., Tofan, D., Beetstra, D., Al-Nezari, A., Al-Bahily, K., and Cummins, C.C., Chem. Sci., 2017, vol. 8, pp. 1463–1468. https://doi.org/10.1039/C6SC03614G

    Article  CAS  PubMed  Google Scholar 

  193. Li, Y., Liu, Z., Zhang, J., Cheng, R., and Liu, B., ChemCatChem., 2018, vol. 10, pp. 5669–5678. https://doi.org/10.1002/cctc.201801305

    Article  CAS  Google Scholar 

  194. Li, Y., Liu, Z., Cheng, R., and Liu, B., ChemCatChem., 2018, vol. 10, pp. 1420–1430. https://doi.org/10.1002/cctc.201701763

    Article  CAS  Google Scholar 

  195. Patent WO 2015173276, 2015.

  196. Patent WO 2015173277, 2015.

  197. Patent WO 2016180775, 2016.

  198. Patent WO 2017178282, 2017.

  199. Takahashi, K., Hirataka, Y., Ito, T., and Iwasawa, N., Organometallics, 2020, vol. 39, pp. 1561–1572. https://doi.org/10.1021/acs.organomet.9b00659

    Article  CAS  Google Scholar 

  200. Sunley, G.J. and Watson, D.J., Catal. Today, 2000, vol. 58, pp. 293–307. https://doi.org/10.1016/S0920-5861(00)00263-7

    Article  CAS  Google Scholar 

  201. Fukuoka, A., Gotoh, N., Kobayashi, N., Hirano, M., and Komiya, S., Chem. Lett., 1995, vol. 24, pp. 567–568. https://doi.org/10.1246/cl.1995.567

    Article  Google Scholar 

  202. Qian, Q., Zhang, J., Cui, M., and Han, B., Nat. Commun., 2016, vol. 7, pp. 11481. https://doi.org/10.1038/ncomms11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cui, M., Qian, Q., Zhang, J., Chen, C., and Han, B., Green Chem., 2017, vol. 19, pp. 3558–3565. https://doi.org/10.1039/C7GC01391D

    Article  CAS  Google Scholar 

  204. Wang, Y., Qian, Q., Zhang, J., Bediako, B.B.A., Wang, Z., Liu, H., and Han, B., Nat. Commun., 2019, vol. 10, pp. 5395. https://doi.org/10.1038/s41467-019-13463-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tominaga, K., Sasaki, Y., Watanabe, T., and Saito, M., Stud. Surface Sci. Catal., 1998, vol. 114, pp. 495–498. https://doi.org/10.1016/S0167-2991(98)80804-5

    Article  CAS  Google Scholar 

  206. Wang, Y., Zhang, J., Qian, Q., Asare Bediako, B.B., Cui, M., Yang, G., Yan, J., and Han, B., Green Chem., 2019, vol. 21, pp. 589–596. https://doi.org/10.1039/C8GC03320J

    Article  CAS  Google Scholar 

  207. Bediako, B.B.A., Qian, Q., Zhang, J., Wang, Y., Shen, X., Shi, J., Cui, M., Yang, G., Wang, Z., Tong, S., and Han, B., Green Chem., 2019, vol. 21, pp. 4152–4158. https://doi.org/10.1039/C9GC01185D

    Article  Google Scholar 

  208. Qian, Q., Cui, M., Zhang, J., Xiang, J., Song, J., Yang, G., and Han, B., Green Chem., 2018, vol. 20, pp. 206–213. https://doi.org/10.1039/C7GC02807E

    Article  CAS  Google Scholar 

  209. Zhang, J., Qian, Q., Wang, Y., Asare Bediako, B.B., Yan, J., and Han, B., Chem. Sci., 2019, vol. 10, pp. 10640–10646. https://doi.org/10.1039/C9SC03386F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dibenedetto, A. and Angelini, A., Adv. Inorg. Chem., 2014, vol. 66, pp. 25–81. https://doi.org/10.1016/B978-0-12-420221-4.00002-0

    Article  CAS  Google Scholar 

  211. Aresta, M., Dibenedetto, A., Angelini, A., and Pápai, I., Top. Catal., 2015, vol. 58, pp. 2–14. https://doi.org/10.1007/s11244-014-0342-0

    Article  CAS  Google Scholar 

  212. Su, X., Lin, W., Cheng, H., Zhang, C., Wang, Y., Yu, X., Wu, Z., and Zhao, F., Green Chem., 2017, vol. 19, pp. 1775–1781. https://doi.org/10.1039/C7GC00260B

    Article  CAS  Google Scholar 

  213. Ballivet-Tkatchenko, D., and Sorokina S., Linear Organic Carbonates, in Carbon Dioxide Recovery and Utilization, Dordrecht: Springer Netherlands, 2003, pp. 261–277. https://doi.org/10.1007/978-94-017-0245-4_10

  214. Sakakura, T. and Kohno, K., Chem. Commun., 2009, no. 11, pp. 1312. https://doi.org/10.1039/b819997c

    Article  CAS  Google Scholar 

  215. Park, J.H., Jeon, J.Y., Lee, J.J., Jang, Y., Varghese, J.K., and Lee, B.Y., Macromolecules, 2013, vol. 46, pp. 3301–3308. https://doi.org/10.1021/ma400360w

    Article  CAS  Google Scholar 

  216. Delledonne, D., Rivetti, F., and Romano, U., Appl. Catal. A: Gen., 2001, vol. 221, pp. 241–251. https://doi.org/10.1016/S0926-860X(01)00796-7

    Article  CAS  Google Scholar 

  217. Romano, U., Tesel, R., Mauri, M.M., and Rebora, P., Ind. Eng. Chem. Prod. Res. Dev., 1980, vol. 19, pp. 396–403. https://doi.org/10.1021/i360075a021

    Article  CAS  Google Scholar 

  218. Fukuoka, S., Kawamura, M., Komiya, K., Tojo, M., Hachiya, H., Hasegawa, K., Aminaka, M., Okamoto, H., Fukawa, I., and Konno, S., Green Chem., 2003, vol. 5, pp. 497–507. https://doi.org/10.1039/B304963A

    Article  CAS  Google Scholar 

  219. He, Y., Lu, H., Li, X., Wu, J., Pu, T., Du, W., Li, H., Ding, J., Wan, H., and Guan, G. I, Green Chem., 2021, vol. 23, pp. 8571–8580. https://doi.org/10.1039/D1GC02539B

    Article  CAS  Google Scholar 

  220. Aresta, M., Dibenedetto, A., and Pastore, C., Inorg Chem., 2003, vol. 42, pp. 3256–3261. https://doi.org/10.1021/ic020536g

    Article  CAS  PubMed  Google Scholar 

  221. Aresta, M., Dibenedetto, A., Pastore, C., Pápai, I., and Schubert, G., Top. Catal., 2006, vol. 40, pp. 71–81. https://doi.org/10.1007/s11244-006-0109-3

    Article  CAS  Google Scholar 

  222. Ballivet-Tkatchenko, D., Jerphagnon, T., Ligabue, R., Plasseraud, L., and Poinsot, D., Appl. Catal. A: Gen., 2003, vol. 255, pp. 93–99. https://doi.org/10.1016/S0926-860X(03)00647-1

    Article  CAS  Google Scholar 

  223. Ballivet-Tkatchenko, D., Chambrey, S., Keiski, R., Ligabue, R., Plasseraud, L., Richard, P., and Turunen, H., Catal. Today, 2006, vol. 115, pp. 80–87. https://doi.org/10.1016/j.cattod.2006.02.025

    Article  CAS  Google Scholar 

  224. Kohno, K., Choi, J.-C., Ohshima, Y., Yili, A., Yasuda, H., and Sakakura, T., J. Organomet. Chem., 2008, vol. 693, pp. 1389–1392. https://doi.org/10.1016/j.jorganchem.2008.01.028

    Article  CAS  Google Scholar 

  225. Kizlink, J. and Pastucha, I., Coll. Czechoslovak Chem. Commun., 1995, vol. 60, pp. 687–692. https://doi.org/10.1135/cccc19950687

    Article  CAS  Google Scholar 

  226. Kohno, K., Choi, J.-C., Ohshima, Y., Yasuda, H., and Sakakura, T., ChemSusChem., 2008, vol. 1, pp. 186–188. https://doi.org/10.1002/cssc.200700113

    Article  CAS  PubMed  Google Scholar 

  227. Dibenedetto, A., Pastore, C., and Aresta, M., Catal. Today, 2006, vol. 115, pp. 88–94. https://doi.org/10.1016/j.cattod.2006.02.026

    Article  CAS  Google Scholar 

  228. Aresta, M., Dibenedetto, A., Fracchiolla, E., Giannoccaro, P., Pastore, C., Pápai, I., and Schubert, G., J. Org. Chem., 2005, vol. 70, pp. 6177–6186. https://doi.org/10.1021/jo050392y

    Article  CAS  PubMed  Google Scholar 

  229. Aresta, M., Dibenedetto, A., Devita, C., Bourova, O.A., and Chupakhin, O.N., Stud. Surface Sci. Catal., 2004, vol. 153, pp. 213–220. https://doi.org/10.1016/S0167-2991(04)80251-9

    Article  CAS  Google Scholar 

  230. Beattie, C., North, M., and Villuendas, P., Molecules, 2011, vol. 16, pp. 3420–3432. https://doi.org/10.3390/molecules16043420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D., Energy Environ. Sci., 2011, vol. 4, pp. 3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  232. Patent US 6169061, 2001.

  233. Yu, W., Maynard, E., Chiaradia, V., Arno, M.C., and Dove, A.P., Chem. Rev., 2021, vol. 121, pp. 10865–10907. https://doi.org/10.1021/acs.chemrev.0c00883

    Article  CAS  PubMed  Google Scholar 

  234. North, M., New and Future Develop. Catal., 2013, pp. 379–413. https://doi.org/10.1016/B978-0-444-53882-6.00014-0

  235. Jin, X., Ding, J., Xia, Q., Zhang, G., Yang, C., Shen, J., Subramaniam, B., and Chaudhari, R.V., J. CO2 Util., 2019, vol. 34, pp. 115–148. https://doi.org/10.1016/j.jcou.2019.05.024

    Article  CAS  Google Scholar 

  236. Yasuda, H., He, L., Sakakura, T., and Hu, C., J. Catal., 2005, vol. 233, pp. 119–122. https://doi.org/10.1016/j.jcat.2005.04.030

    Article  CAS  Google Scholar 

  237. Kiatkittipong, K., Mohamad Shukri, M.A.A., Kiatkittipong, W., Lim, J.W., Show, P.L., Lam, M.K., and Assabumrungrat, S., Processes, 2020, vol. 8, pp. 548. https://doi.org/10.3390/pr8050548

    Article  CAS  Google Scholar 

  238. Lopes, E., Ribeiro, A., and Martins, L., Сatalysts, 2020, vol. 10, pp. 479. https://doi.org/10.3390/catal10050479

    Article  CAS  Google Scholar 

  239. Guo, L., Lamb, K.J., and North, M., Green Chem., 2021, vol. 23, pp. 77–118. https://doi.org/10.1039/D0GC03465G

    Article  CAS  Google Scholar 

  240. Kim, Y., Hyun, K., Ahn, D., Kim, R., Park, M.H., and Kim, Y., ChemSusChem., 2019, vol. 12, pp. 4211–4220. https://doi.org/10.1002/cssc.201901661

    Article  CAS  PubMed  Google Scholar 

  241. Whiteoak, C.J., Kielland, N., Laserna, V., EscuderoAdán, E.C., Martin, E., and Kleij, A.W., J. Am. Chem. Soc., 2013, vol. 135, pp. 1228–1231. https://doi.org/10.1021/ja311053h

    Article  CAS  PubMed  Google Scholar 

  242. dela Cruz, J.B. and Hung, C.-H., Catal. Sci. Technol., 2021, vol. 11, pp. 2144–2154. https://doi.org/10.1039/D0CY02182B

    Article  CAS  Google Scholar 

  243. Takagaki, A., Iwatani, K., Nishimura, S., and Ebitani, K., Green Chem., 2010, vol. 12, pp. 578–581. https://doi.org/10.1039/b925404h

    Article  CAS  Google Scholar 

  244. Hong, M., Gao, L., and Xiao, G., Chem. Res., 2014, vol. 38, pp. 679–681

    Article  CAS  Google Scholar 

  245. Zhao, T., Hu, X., Wu, D., Li, R., Yang, G., and Wu, Y., ChemSusChem., 2017, vol. 10, pp. 2046–2052. https://doi.org/10.1002/cssc.201700128

    Article  CAS  PubMed  Google Scholar 

  246. Khokarale, S.G. and Mikkola, J.-P., RSC Adv., 2019, vol. 9, pp. 34023–34031. https://doi.org/10.1039/C9RA06765E

    Article  CAS  Google Scholar 

  247. Reithofer, M.R., Sum, Y.N., and Zhang, Y., Green Chem., 2013, vol. 15, pp. 2086–2090. https://doi.org/10.1039/c3gc40790j

    Article  CAS  Google Scholar 

  248. Hu, J., Ma, J., Zhu, Q., Qian, Q., Han, H., Mei, Q., and Han, B., Green Chem., 2016, vol. 18, pp. 382–385. https://doi.org/10.1039/C5GC01870F

    Article  CAS  Google Scholar 

  249. Chen, K., Shi, G., Dao, R., Mei, K., Zhou, X., Li, H., and Wang, C., Chem. Commun., 2016, vol. 52, no. 50, pp. 7830–7833. https://doi.org/10.1039/C6CC02853E

    Article  CAS  Google Scholar 

  250. Dabral, S., Bayarmagnai, B., Hermsen, M., Schießl, J., Mormul, V., Hashmi, A.S.K., and Schaub, T., Org. Lett., 2019, vol. 21, pp. 1422–1425. https://doi.org/10.1021/acs.orglett.9b00156

    Article  CAS  PubMed  Google Scholar 

  251. Aresta, M., Dibenedetto, A., Dileo, C., Tommasi, I., and Amodio, E., J. Supercrit. Fluids, 2003, vol. 25, pp. 177–182. https://doi.org/10.1016/S0896-8446(02)00095-5

    Article  CAS  Google Scholar 

  252. Müller, K., Mokrushina, L., and Arlt, W., Chem. Ing. Tech., 2014, vol. 86, pp. 497–503. https://doi.org/10.1002/cite.201300152

    Article  CAS  Google Scholar 

  253. Tamura, M., Honda, M., Nakagawa, Y., and Tomishige, K., J. Chem. Tech. Biotech., 2014, vol. 89, pp. 19–33. https://doi.org/10.1002/jctb.4209

    Article  CAS  Google Scholar 

  254. Büttner, H., Longwitz, L., Steinbauer, J., Wulf, C., and Werner, T., Top. Curr. Chem., 2017, vol. 375, pp. 50. https://doi.org/10.1007/s41061-017-0136-5

    Article  CAS  Google Scholar 

  255. Comerford, J.W., Ingram, I.D.V., North, M., and Wu, X., Green Chem., 2015, vol. 17, pp. 1966–1987. https://doi.org/10.1039/C4GC01719F

    Article  CAS  Google Scholar 

  256. Zhang, L., Zhang, Z., Wu, C., Qian, Q., Ma, J., Jiang, L., and Han, B., Pure Appl. Chem., 2018, vol. 90, pp. 1–6. https://doi.org/10.1515/pac-2017-0303

    Article  CAS  Google Scholar 

  257. Deng, L., Sun, W., Shi, Z., Qian, W., Su, Q., Dong, L., He, H., Li, Z., and Cheng, W., J. Mol. Liq., 2020, vol. 316, p. 113883. https://doi.org/10.1016/j.molliq.2020.113883

    Article  CAS  Google Scholar 

  258. Zhang, T., Zhang, B., Li, L., Zhao, N., and Xiao, F., Catal. Commun., 2015, vol. 66, pp. 38–41. https://doi.org/10.1016/j.catcom.2015.03.014

    Article  CAS  Google Scholar 

  259. Schmitz, M., Solmi M.V., and Leitner, W., Organometallics for Green Catalysis, Cham: Springer, 2018, pp. 17–38. https://doi.org/10.1007/3418_2018_24

  260. Calmanti, R., Selva, M., and Perosa, A., Green Chem., 2021, vol. 23, pp. 1921–1941. https://doi.org/10.1039/D0GC04168H

    Article  CAS  Google Scholar 

  261. Wang, L., Que, S., Ding, Z., and Vessally, E., RSC Adv., 2020, vol. 10, pp. 9103–9115. https://doi.org/10.1039/C9RA10755J

    Article  CAS  Google Scholar 

  262. Han, F., Li, H., Zhuang, H., Hou, Q., Yang, Q., Zhang, B., and Miao, C., J. CO2 Util., 2021, vol. 53, pp. 101742. https://doi.org/10.1016/j.jcou.2021.101742

    Article  CAS  Google Scholar 

  263. Ramidi, P., Felton, C.M., Subedi, B.P., Zhou, H., Tian, Z.R., Gartia, Y., Pierce, B.S., and Ghosh, A., J. CO2 Util., 2015, vol. 9, pp. 48–57. https://doi.org/10.1016/j.jcou.2014.12.004

    Article  CAS  Google Scholar 

  264. Taherimehr, M. and Pescarmona, P.P., J. Appl. Polym. Sci., 2014, vol. 131, pp. 41141. https://doi.org/10.1002/app.41141

    Article  CAS  Google Scholar 

  265. Luinstra, G., Polym. Rev., 2008, vol. 48, pp. 192–219. https://doi.org/10.1080/15583720701834240

    Article  CAS  Google Scholar 

  266. Serini, V., Polycarbonates, in Ullmann᾿s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2000, pp. 603–611. https://doi.org/10.1002/14356007.a21_207

  267. Ye, S., Wang, S., Lin, L., Xiao, M., and Meng, Y., Adv. Ind. Eng. Polym. Res., 2019, vol. 2, pp. 143–160. https://doi.org/10.1016/j.aiepr.2019.09.004

    Article  Google Scholar 

  268. Inoue, S., Koinuma, H., and Tsuruta, T., J. Polym. Sci. B: Polym. Lett., 1969, vol. 7, pp. 287–292. https://doi.org/10.1002/pol.1969.110070408

    Article  CAS  Google Scholar 

  269. Coates, G.W. and Moore, D.R., Angew. Chem. Int. Ed., 2004, vol. 43, pp. 6618–6639. https://doi.org/10.1002/anie.200460442

    Article  CAS  Google Scholar 

  270. Darensbourg, D.J., Chem. Rev., 2007, vol. 107, pp. 2388–2410. https://doi.org/10.1021/cr068363q

    Article  CAS  PubMed  Google Scholar 

  271. Kozak, C.M., Ambrose, K., and Anderson, T.S., Coord. Chem. Rev., 2018, vol. 376, pp. 565–587. https://doi.org/10.1016/j.ccr.2018.08.019

    Article  CAS  Google Scholar 

  272. Thayer, A., Chem. Eng. News, 2015, no. 4. https://cen.acs.org/articles/93/i4/Greener-Routes-Polymers.html?ref=search_results

  273. Langanke, J., Wolf, A., Hofmann, J., Böhm, K., Subhani, M.A., Müller, T.E., Leitner, W., and Gürtler, C., Green Chem., 2014, vol. 16, pp. 1865–1870. https://doi.org/10.1039/C3GC41788C

    Article  CAS  Google Scholar 

  274. Subhani, M.A., Gürtler, C., Leitner, W., and Müller, T.E., Eur. J. Inorg. Chem., 2016, vol. 2016, pp. 1944–1949. https://doi.org/10.1002/ejic.201501187

    Article  CAS  Google Scholar 

  275. Tran, D.K., Rashad, A.Z., Darensbourg, D.J., and Wooley, K.L., Polym. Chem., 2021, vol. 12, pp. 5271–5278. https://doi.org/10.1039/D1PY00784J

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Ministry of Science and Higher Education of the Russian Federation for financial support (Agreement no. 075-15-2021-1363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gorbunov.

Ethics declarations

A.L. Maximov and E.A. Karakhanov, co-authors, are the Chief Editor and an editorial board member, respectively, at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunov, D.N., Nenasheva, M.V., Terenina, M.V. et al. Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Pet. Chem. 62, 1–39 (2022). https://doi.org/10.1134/S0965544122010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122010054

Keywords:

Navigation