Skip to main content
Log in

Effects of Ion Exchange Degree on the Physicochemical and Catalytic Properties of CsNaY

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study investigates the effects of the degree of ion exchange of sodium cations for cesium cations in FAU(Y) on its physicochemical properties. Using aqueous and solid-state ion exchange, a number of NaY samples with an exchange degree of sodium cations for cesium cations varying from 29 to 89% were prepared. The samples were examined by SEM, X-ray fluorescence, low-temperature nitrogen adsorption, XRD, NH3-TPD, IR spectroscopy of adsorbed chloroform, and 27Al MAS NMR. It was demonstrated that samples with exchange degrees up to 87% can be synthesized with their crystalline structure intact. The test of the catalytic properties of the synthesized samples in aniline alkylation with methanol showed a growth in the selectivity for N-alkylated products as the number and strength of basic sites were progressively increased. Impregnating the Cs-containing zeolites with CsOH was found to significantly enhance the operating stability of the samples and the yield of N-alkylated products, compared to CsNaY. The CsOH-modified catalysts with a Na+/Cs+ exchange degree of 54–77% proved to be the most active and stable in aniline alkylation with methanol: they provided aniline conversion of 81–88% and selectivity for N-alkylation products as high as 99.6–99.7 mol %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bordawekar, S.V. and Davis, R.J., J. Catal., 2000, vol. 189, pp. 79–90. https://doi.org/10.1006/jcat.1999.2703

    Article  CAS  Google Scholar 

  2. Kim, J.C., Li, H.-X., Chen, C.-Y., and Davis, M.E., Microporous Mater., 1994, vol. 2, pp. 413–423. https://doi.org/10.1016/0927-6513(94)00008-5

    Article  CAS  Google Scholar 

  3. Jacobs, P.A. and Uytterhoeven, J.B., J. Catal., 1977, vol. 50, pp. 109–114. https://doi.org/10.1016/0021-9517(77)90013-6

    Article  CAS  Google Scholar 

  4. Hathaway, P.E. and Davis, M.E., J. Catal., 1989, vol. 116, pp. 263–278. https://doi.org/10.1016/0021-9517(89)90091-2

    Article  CAS  Google Scholar 

  5. Hathaway, P.E. and Davis, M.E., J. Catal., 1989, vol. 116, pp. 279–284. https://doi.org/10.1016/0021-9517(89)90092-4

    Article  CAS  Google Scholar 

  6. Cocepcion-Heydorn, P., Jia, C., Pfander, N., Karge, H.G., and Jentoft, F.C., J. Mol. Catal. A, 2000, vol. 162, pp. 227–246. https://doi.org/10.1016/S1381-1169(00)00292-2

    Article  Google Scholar 

  7. Fu, Z-H. and Ono, Y., Catal. Lett., 1993, vol. 21, pp. 43–47. https://doi.org/10.1007/BF00767369

    Article  CAS  Google Scholar 

  8. Wieland, W.S., Davis, R.J., and Garses, J.M., J. Catal., 1998, vol. 173, pp. 490–500. https://doi.org/10.1006/jcat.1997.1952

    Article  CAS  Google Scholar 

  9. Borgna, A., Sepulveda, J., Magni, S.I., and Apesteguia, C.R., Appl. Catal. A: Gen., 2004, vol. 276, pp. 207–215. https://doi.org/10.1016/j.apcata.2004.08.007

    Article  CAS  Google Scholar 

  10. Palomares, A.E., Eder-Marth, G., Rep, M., and Lercher, J.A., J. Catal., 1998, vol. 180, pp. 56–65. https://doi.org/10.1006/jcat.1998.2253

    Article  CAS  Google Scholar 

  11. Sooknoi, T. and Dwyer, J., J. Mol. Catal. A, 2004, vol. 211, pp. 155–164. https://doi.org/10.1016/j.molcata.2003.10.017

    Article  CAS  Google Scholar 

  12. Su, B.L. and Barthomeuf, D., Appl. Catal. A: Gen., 1995, vol. 124, pp. 73–80. https://doi.org/10.1016/0926-860X(94)00247-9

    Article  CAS  Google Scholar 

  13. Ivanova, I.I., Pomakhina, E.B., Rebrov, A.I., Wang, W., Hunger, M., and Weitkamp, J., Kinet. Catal., 2003, vol. 44, pp. 701–709 https://doi.org/10.1023/A:1026158525990

    Article  CAS  Google Scholar 

  14. Ponomareva, O.A., Shaposhnik, P.A., Belova, M.V., Kolozhvari, B.A., and Ivanova, I.I., Front. Chem. Sci. Eng., 2018, vol. 12, pp. 70–76. https://doi.org/10.1007/s11705-017-1694-3

    Article  CAS  Google Scholar 

  15. Zeolites in Catalysis: Properties and Applications, RSC Catalysis Series, 2017.

  16. Karge, H.G. and Beyer, H.K., Molecular Sieves. Science and Technology, 2002, vol. 3, pp. 43–201. https://doi.org/10.1007/3-540-69750-0_2

    Article  CAS  Google Scholar 

  17. Sherry, H.S., J. Phys. Chem., 1966, vol. 70, pp. 1158–1168. https://doi.org/10.1021/j100876a031

    Article  CAS  Google Scholar 

  18. Norby, P., Poshni, P.A., Gualtiery, A.F., Hanson, J.C., and Grey, C.P., J. Phys. Chem., 1998, vol. 102, pp. 839–856. https://doi.org/10.1021/jp9730398

    Article  CAS  Google Scholar 

  19. Koller, H., Burger, B., Schneider, A.M., and Engelhart, G.W.J., Microporous Mater., 1995, vol. 5, pp. 219–232. https://doi.org/10.1016/0927-6513(95)00061-5

    Article  CAS  Google Scholar 

  20. Gerzeliev, I.M., Ostroumova, V.A., Baskhanova, M.N., Saitov, Z.A., Temnikova, V.A., and Khusaimova, D.O., Petrol. Chem., 2017, vol. 57, pp. 1182–1185. https://doi.org/10.1134/S0965544117060147

    Article  CAS  Google Scholar 

  21. Tamura, M., Shimizu, K., and Satsuma, A., Appl. Catal. A, 2012, vols. 433–434, pp. 135–145. http://dx.doi.org/10.1016/j.apcata.2012.05.008

    Article  Google Scholar 

  22. Bordiga, S., Lamberti, C., Bonino, F., Travertd, A., and Thibault-Starzyk, F., Chem. Soc. Rev., 2015, vol. 44, pp. 7262–7343. https://doi.org/10.1039/C5CS00396B

    Article  CAS  PubMed  Google Scholar 

  23. Romero, M.D., Ovejero, G., Rodriguez, A., and Gomez, J.M., Microp. Mesopor. Mater., 2005, vol. 81, pp. 313–320. https://doi.org/10.1016/j.micromeso.2005.02.013

    Article  CAS  Google Scholar 

Download references

Funding

The NMR examination of the samples was performed with financial support from the Russian Science Foundation (RSF Grant no. 20-13-00203). The synthesis of the samples and the investigation of their physicochemical and catalytic properties were carried out within the State Program “Physical chemistry of surface adsorption and catalysis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ponomareva.

Ethics declarations

I.I. Ivanova, a co-author, is the Chief Editor at the Sovremennye molekulyarnye sita (Advanced Molecular Sieves) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, O.A., Shaposhnik, P.A., Nazarova, V.I. et al. Effects of Ion Exchange Degree on the Physicochemical and Catalytic Properties of CsNaY. Pet. Chem. 62, 301–309 (2022). https://doi.org/10.1134/S0965544122010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122010042

Keywords:

Navigation