Skip to main content
Log in

Coconversion of n-Dodecane and 2-Methylthiophene in the Presence of Dual-Zeolite Cracking Catalysts Containing Different Amounts of Rare-Earth Elements

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of the rare-earth element (REE) content in dual-zeolite cracking catalysts on the conversion of n-dodecane and an n-dodecane–2-methylthiophene mixture (5000 ppm S) has been studied. The catalysts have been synthesized using zeolites Y and ZSM-5 modified with REEs and phosphorus, respectively, as the active component. It has been shown that the presence of REE oxides in zeolite Y (at a constant SiO2/Al2O3 ratio) affects the catalytic activity of cracking catalysts based on this zeolite. The dependence of the light olefin yield on the REE oxide content in zeolite Y passes through a maximum at 2–3 wt %. The presence of a sulfur compound in an amount of 5000 ppm (in terms of sulfur) in the feedstock leads to a decrease in the model hydrocarbon conversion and the C2–C4 olefin yield. In the presence of a sulfur compound, the change in the C2–C4 olefin yield as a function of REE oxide content in zeolite Y is less pronounced than that in the case of individual n-dodecane cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. M. Sadrameli, Fuel 173, 285 (2016).

    Article  CAS  Google Scholar 

  2. R. Sadeghbeigi, Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units (Elsevier, Amsterdam, 2012).

    Google Scholar 

  3. A. Slagtern, I. M. Dahl, K. J. Jens, and T. Myrstad, Appl. Catal., A 375, 213 (2010).

  4. X. Hou, Y. Qiu, E. Yuan, et al., Appl. Catal., A 543, 51 (2017).

  5. H. S. Cerqueira, G. Caeiro, L. Costa, and F. R. Ribeiro, J. Mol. Catal., A 292, 1 (2008).

  6. O. V. Potapenko, V. P. Doronin, and T. P. Sorokina, Pet. Chem. 52 55 (2012).

    Article  CAS  Google Scholar 

  7. T. V. Bobkova, O. V. Potapenko, V. P. Doronin, and T. P. Sorokina, Fuel Process. Technol. 172, 172 (2018).

    Article  CAS  Google Scholar 

  8. J. Ruiz-Martínez, L. C. Buurmans, W. V. Knowles, et al., Appl. Catal., A 419–420, 84 (2012).

  9. F. Can, A. Travert, V. Ruaux, et al., J. Catal. 249, 79 (2007).

    Article  CAS  Google Scholar 

  10. P. Bai, U. J. Etim, Z. Yan, et al., Catal. Rev. 61, 333 (2019).

    Article  CAS  Google Scholar 

  11. F. Hernandez-Beltran, R. Quintana-Solorzano, J. Sanchez-Valente, et al., Appl. Catal., B 42, 145 (2003).

    Article  CAS  Google Scholar 

  12. P. Leflaive, J. L. Lemberton, G. Perot, et al., Appl. Catal., A 227, 201 (2002).

  13. Y. Zu, C. Zhang, Y. Qin, et al., J. Energy Chem. 39, 256 (2019).

    Article  Google Scholar 

  14. X. Du, X. Gao, H. Zhang, et al., Catal. Commun. 35, 17 (2013).

    Article  CAS  Google Scholar 

  15. S. Yu and H. Tian, Chin. J. Catal. 35, 1318 (2014).

    Article  CAS  Google Scholar 

  16. V. P. Doronin, T. P. Sorokina, P. V. Lipin, et al., Catal. Ind. 7, 12 (2015).

    Article  Google Scholar 

  17. R. Pouria, L. Vafi, and R. Karimzadeh, J. Rare Earths 35, 542 (2017).

    Article  CAS  Google Scholar 

  18. K. Kubo, H. Iida, S. Namba, and A. Igarashi, J. Jpn. Pet. Inst. 61, 10 (2018).

    Article  CAS  Google Scholar 

  19. T. Blasco, A. Corma, and J. Martínez-Triguero, J. Catal. 237, 267 (2006).

    Article  CAS  Google Scholar 

  20. Y. Ji, H. Yang, Q. Zhang, and W. Yan, J. Solid State Chem. 251, 7 (2017).

    Article  CAS  Google Scholar 

  21. J. Ding, M. Wang, L. Peng, et al., Appl. Catal., A 503, 147 (2015).

  22. F. J. Passamonti, G. de la Puente, and U. Sedran, Catal. Today 133–135, 314 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank T.I. Gulyaeva, V.P. Talzi, S.N. Evdokimov, G.G. Savel’eva, A.V. Babenko, and R.R. Izmailov (Laboratory of analytical and physicochemical research methods, Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences). This work was performed using the equipment of the Shared-Use Center “National Center for Catalyst Research” at the Boreskov Institute of Catalysis (Siberian Branch of the Russian Academy of Sciences).

Funding

This work was performed with a financial support for applied research from the Ministry of Education and Science of the Russian Federation, agreement no. 05.607.21.0309 (project unique identifier RFMEFI60719X0309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Potapenko.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhova, K.S., Yurtaeva, A.S., Potapenko, O.V. et al. Coconversion of n-Dodecane and 2-Methylthiophene in the Presence of Dual-Zeolite Cracking Catalysts Containing Different Amounts of Rare-Earth Elements. Pet. Chem. 60, 923–928 (2020). https://doi.org/10.1134/S0965544120080113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120080113

Keywords:

Navigation