Skip to main content
Log in

Kinetics of Mass Transfer between Liquid and Solid Phases during Crystallization of High Crystallinity Granular Mordenite with Hierarchical Pore Structure

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effects of temperature and duration of thermochemical treatment in a sodium silicate solution of metakaolin; a mechanical mixture containing 60 wt % mordenite, 30 wt % metakaolin, and 10 wt % fumed silica; and granules of the same composition on the mass transfer between the liquid and solid phases of the reaction mixture have been studied. The main steps of the formation of high-crystallinity granular mordenite with a hierarchical pore structure have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. S. Cundy and P. A. Cox, Microporous Mesoporous Mater. 82, 1 (2005).

    Article  CAS  Google Scholar 

  2. E. M. Movsumzade, M. L. Pavlov, B. G. Uspenskii, and N. D. Kostina, Natural and Synthetic Zeolites and Their Preparation and Application (Reaktiv, Ufa, 2000) [in Russian].

    Google Scholar 

  3. T. C. Golden, F. W. Taylor, L. Maureen, et al., US Patent No. 6106593 (2000).

  4. G. M. Tom and J. V. McManus, US Patent No. 6406519 (2002).

  5. J. Cejka, A. Corma, and S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications (Wiley–VCH, Weinheim, 2010).

    Book  Google Scholar 

  6. C. Martinez and A. Corma, Coord. Chem. Rev. 255, 1558 (2011).

    Article  CAS  Google Scholar 

  7. H. Zhou, W. Zhu, L. Shi, et al., Catal. Sci. Technol. 5, 1961 (2015).

    Article  CAS  Google Scholar 

  8. N. M. Tukur and S. Al-Khattaf, Chem. Eng. J. 166, 348 (2011).

    Article  CAS  Google Scholar 

  9. R. Szostak, Molecular Sieves, Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989).

    Book  Google Scholar 

  10. J. Grand, H. Awala, and S. Mintova, Cryst. Eng. Commun. 18, 650 (2016).

    Article  CAS  Google Scholar 

  11. M. B. Park, N. H. Ahn, R. W. Broach, et al., Chem. Mater. 27, 1574 (2015).

    Article  CAS  Google Scholar 

  12. M. Severance, B. Wang, K. Ramasubramanian, et al., Langmuir 30, 6929 (2014).

    Article  CAS  Google Scholar 

  13. N. D. Hould, A. Foster, and R. F. Lobo, Microporous Mesoporous Mater. 142, 104 (2011).

    Article  CAS  Google Scholar 

  14. C. Liu, W. Gu, D. Kong, and H. Guo, Microporous Mesoporous Mater. 183, 30 (2014).

    Article  CAS  Google Scholar 

  15. B. Zheng, Y. Wan, W. Yang, et al., Chin. J. Catal. 35, 1800 (2014).

    Article  CAS  Google Scholar 

  16. O. S. Travkina, M. R. Agliullin, R. Z. Kuvatova, et al., J. Porous Mater. 26, 995 (2019).

    Article  CAS  Google Scholar 

  17. M. Gross-Lorgouilloux, P. Caullet, M. Soulard, et al., Microporous Mesoporous Mater. 131, 407 (2010).

    Article  CAS  Google Scholar 

  18. Z. Zhou, G. Jin, H. Liu, et al., Appl. Clay Sci. 97–98, 110 (2014).

    Article  Google Scholar 

  19. S. Su, H. Ma, and X. Chuan, Adv. Powder Technol. 27, 139 (2016).

    Article  CAS  Google Scholar 

  20. N. S. Poluektov, Methods of Flame Photometric Analysis (Goskhimizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  21. G. Charlot, Les methodes de la chimie analytique: Analyse quantitative minerale (Masson, Paris, 1961).

    Google Scholar 

  22. G. Schwarzenbach and H. Flaschka, Die Komplexometrische Titration (Ferdinand Enke, Stuttgart, 1965)

    Google Scholar 

  23. S. J. Gregg and K. S. Sing, Adsorption, Surface Area, and Porosity (Academic, London, 1982).

    Google Scholar 

  24. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The analysis of the materials was carried out using the equipment of the Agidel Shared-Use Center at the Institute of Petroleum Chemistry and Catalysis of the Russian Academy of Sciences.

Funding

The work was carried out within the framework of the state assignment of the Institute of Petroleum Chemistry and Catalysis of the Russian Academy of Sciences on the topic “High-crystallinity zeolite materials of various structural types with a hierarchical pore structure—a new generation of catalysts for the synthesis of practically important petrochemical products,” state registration no. AAAA-A19-119022290006-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Travkina.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travkina, O.S., Pavlova, I.N. & Kutepov, B.I. Kinetics of Mass Transfer between Liquid and Solid Phases during Crystallization of High Crystallinity Granular Mordenite with Hierarchical Pore Structure. Pet. Chem. 60, 437–443 (2020). https://doi.org/10.1134/S0965544120040179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120040179

Keywords:

Navigation