Skip to main content
Log in

Cracking of Maltenes of Naphthenic Petroleum in the Presence of WC/Ni–Cr

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Influence of the WC/Ni–Cr additive on the cracking of maltenes of naphthenic crude oil from the Usa oil field has been studied. Maltene cracking was carried out at 450°С for 2 h in the isothermal mode. Material balance of cracking, the composition of gaseous products, and the fractional, component, and hydrocarbon compositions of feed maltenes and liquid products of their cracking have been determined. It has been shown that cracking with WC/Ni–Cr gives more gaseous and solid products. In comparison with starting maltenes and the product of their cracking in the absence of the additive, the yield of IBP–360°С distillate fractions increases by factors of 1.6 and 1.4, respectively. It has been found that cracking reactions lead to degradation of resinous components to give low-molecular-weight resins and light hydrocarbons and parallel condensation reactions promote the formation of asphaltenes and solid products. It has been shown that the additive WC/Ni–Cr has cracking properties, as indicated by significant differences in fractional and hydrocarbon compositions of liquid products, and by the fact that the amount of Н2 and С1–С2 hydrocarbon gases in the products of cracking is much higher in the presence than in the absence of  WC/Ni–Cr. This difference can be due to degradation of not only resins, but also high-molecular-weight naphthenoaromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. R. Yakubov, D. N. Borisov, N. U. Maganov, et al., Neft. Khoz., No. 5, 74 (2016).

  2. A. G. Okunev, E. V. Parkhomchuk, A. I. Lysikov, et al., Usp. Khim., No. 9, 987 (2015).

  3. M. Meena and F. Edward, Energy Fuels 31, 5711 (2017).

    Article  Google Scholar 

  4. A. Y. León, A. Guzman, D. Laverde, et al., Energy Fuels 31, 3868 (2017).

    Article  Google Scholar 

  5. E. Fumoto, S. Sato, and T. Takanohashi, Energy Fuels 32, 2834 (2018).

    Article  CAS  Google Scholar 

  6. R. L. Krumm, M. Deo, and M. Petrick (Direct.), Energy Fuels 26, 2663 (2012).

    Article  CAS  Google Scholar 

  7. P. Holda, L. P. Jose, J. A. Montoya de la Fuente, and M. Marcos, Energy Fuels 31, 4843 (2017).

    Article  Google Scholar 

  8. S. Dhir, N. Mahapatra, V. Kurian, et al., Energy Fuels 30, 6132 (2016).

    Article  CAS  Google Scholar 

  9. Kh. M. Kadiev, S. N. Khadzhiev, M. Kh. Kadieva, and E. S. Dogova, Pet. Chem. 57, 608 (2017).

    Article  CAS  Google Scholar 

  10. M. A. Morozov, A. S. Akimov, S. P. Zhuravkov, et al., Izv. Tomsk. Politekh. Univ., Inzh. Georesurs. 328 (8), 16 (2017).

    Google Scholar 

  11. N. N. Nassar, A. Hassan, and P. Pereira-Almao, Energy Fuels 25, 1566 (2011).

    Article  CAS  Google Scholar 

  12. A. K. Golovko, M. A. Kopytov, O. M. Sharonova, et al., Catal. Ind. 7, 293 (2015).

    Article  Google Scholar 

  13. N. N. Sviridenko, E. B. Krivtsov, and A. K. Golovko, Chem. Technol. Fuels Oils 52, 285 (2016).

    Article  CAS  Google Scholar 

  14. T. Al. Darouich, F. Behar, and C. Largeau, Org. Geochem. 37, 1130 (2006).

    Article  Google Scholar 

  15. F. Behar, F. Lorant, and L. Mazeas, Org. Geochem. 39, 764 (2008).

    Article  CAS  Google Scholar 

  16. H. Tian, X. Xiao, H. Gan, et al., Geochem. J. 44, 151 (2010).

    Article  CAS  Google Scholar 

  17. H. Pakdel and C. Roy, Energy Fuels 17, 1145 (2003).

    Article  CAS  Google Scholar 

  18. S. A. Akhmetov, Technology of Deep Processing of Oil and Gas: A Textbook (Gilem, Ufa, 2002) [in Russian].

    Google Scholar 

  19. E. Alvarez, G. Marroquin, F. Trejo, et al., Fuel 90, 3602 (2011).

    Article  CAS  Google Scholar 

  20. M. G. Mothé, M. Perin, and C. G. Mothé, Pet. Sci. Technol. 34, 314. 2016.

    Article  Google Scholar 

  21. A. Masudi and O. Muraza, Energy Fuels 32, 2840 (2018).

    Article  CAS  Google Scholar 

  22. A. Al-Marshed, A. Hart, G. Leeke, et al., Ind. Eng. Chem. Res. 54, 10645 (2015).

    Article  CAS  Google Scholar 

  23. H. Jeong and Y. Lee, Appl. Catal., A 572, 90 (2019).

  24. E. Furimsky, Appl. Catal., A 240, 1 (2003).

  25. N. N. Sviridenko, E. B. Krivtsov, and A. K. Golovko, Pet. Coal 58, 732 (2016).

    CAS  Google Scholar 

  26. N. N. Sviridenko, E. B. Krivtsov, and A. K. Golovko, Khim. Interesah Ustoich. Razvit. 26, 427 (2018).

    CAS  Google Scholar 

  27. D. E. Dmitriev and A. K. Golovko, Pet. Chem. 50, 106 (2010).

    Article  Google Scholar 

  28. G. S. Pevneva, N. G. Voronetskaya, D. S. Korneev, and A. K. Golovko, Pet. Chem. 57, 739 (2017).

    Article  CAS  Google Scholar 

  29. D. S. Korneev, G. S. Pevneva, and A. K. Golovko, Tekhnol. Nefti Gaza, No. 4 (2016).

  30. G. S. Pevneva, N. G. Voronetskaya, N. N. Sviridenko, and A. K. Golovko, Pet. Sci. 17, 499 (2020). https://doi.org/10.1007/s12182-019-00402-3

    Article  CAS  Google Scholar 

  31. J. Wang, C. Li, L. Zhang, et al., Energy Fuels 23, 3002 (2009).

    Article  CAS  Google Scholar 

  32. V. Burklé-Vitzthum, R. Michels, G. Scacchi, et al., Org. Geochem. 35, 3 (2004).

    Article  Google Scholar 

  33. F. Behar, F. Lorant, H. Budzinski, and E. Desavis, Energy Fuels 16, 831 (2002).

    Article  CAS  Google Scholar 

  34. C. Dartiguelongue, F. Behar, H. Budzinski, et al., Org. Geochem. 37, 98 (2006).

    Article  CAS  Google Scholar 

  35. J. P. Leininger, F. Lorant, C. Minot, and F. Behar, Energy Fuels 20, 2518 (2006).

    Article  CAS  Google Scholar 

  36. A. Hauser, F. Alhumaidan, H. Al-Rabiah, and M. A. Halabi, Energy Fuels 28, 4321 (2014).

    Article  CAS  Google Scholar 

  37. L. Fusetti, F. Behar, R. Bounaceur, et al., Org. Geochem. 41, 146 (2010).

    Article  CAS  Google Scholar 

  38. L. Fusetti, F. Behar, K. Grice, and S. Derenne, Org. Geochem. 41, 168 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in the framework of the State task of the Institute of Petroleum Chemistry, Siberian Branch of Russian Academy of Sciences (project no. V.46.2.2), and supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Pevneva.

Ethics declarations

The authors declare that there is no conflict of interest to be disclosed in this paper .

Additional information

Translated by S. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevneva, G.S., Voronetskaya, N.G. & Sviridenko, N.N. Cracking of Maltenes of Naphthenic Petroleum in the Presence of WC/Ni–Cr. Pet. Chem. 60, 373–379 (2020). https://doi.org/10.1134/S0965544120030160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120030160

Keywords:

Navigation