Skip to main content
Log in

Thermal Transformations of Petroleum Residue Components in the Presence of Power-Plant Flyash Ferrospheres and Sunflower Oil

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The thermal transformations of components of the residue (boiling point above 350°C) of Zuunbayan heavy, high-wax oil (Mongolia) in the presence of cogeneration plant flyash ferrospheres and sunflower oil have been studied. The use of the additives made it possible to obtain additional amounts of distillate fractions (IBP–360°C). The physicochemical characteristics and composition of the products have been determined. The structural-group characteristics of the resin–asphaltene components of the feed petroleum residue and the products of its thermal conversion in the presence of sunflower oil and flyash ferrospheres have been compared. The presence of sunflower oil and ferrospheres leads to a decrease in the molecular weight of the resins and asphaltenes isolated from thermolysis products. The number of naphthenic and paraffinic carbon atoms in resin and asphaltene molecules decreases, and the proportion of aromatic atoms markedly increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Tangy, I. N. Pulidindi, N. Perkas, and A. Gedanken, Bioresour. Technol. 224, 333 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. M. T. Rahman, M. R. Hainin, and W. A. W. A. Bakar, Constr. Build. Mater. 150, 95 (2017).

    Article  Google Scholar 

  3. G. G. Muciño, R. Romero, A. Ramírez, et al., Fuel 138, 143 (2014).

    Article  CAS  Google Scholar 

  4. V. P. Doronin, O. V. Potapenko, P. V. Lipin, et al., Pet. Chem. 52, 392 (2012).

    Article  CAS  Google Scholar 

  5. V. P. Doronin, O. V. Potapenko, P. V. Lipin, and T. P. Sorokina, Catal. Ind. 6, 53 (2014).

    Article  Google Scholar 

  6. A. M. A. Attia and A. E. Hassaneen, Fuel 167, 316 (2016).

    Article  CAS  Google Scholar 

  7. I. K. Hong, H. Jeon, H. Kim, and S. B. Lee, J. Ind. Eng. Chem. 42, 107 (2016).

    Article  CAS  Google Scholar 

  8. T. T. V. Tran, S. Kaiprommarat, S. Kongparakul, et al., Waste Manage. 52, 367 (2016).

    Article  CAS  Google Scholar 

  9. T. Maneerung, S. Kawi, Y. Dai, and C. H. Wang, Energy Convers. Manage. 123, P487 (2016).

    Article  CAS  Google Scholar 

  10. Y. H. Tan, M. O. Abdullah, C. Nolasco-Hipolito, and Y. H. Taufiq-Yap, Appl. Energy 160, 58 (2015).

    Article  CAS  Google Scholar 

  11. A. R. Gupta, S. V. Yadav, and V. K. Rathod, Fuel 158, 800 (2015).

    Article  CAS  Google Scholar 

  12. S. E. Mahesh, A. Ramanathan, K. M. S. Begum, and A. Narayanan, Energy Convers. Manage. 91, 442 (2015).

    Article  CAS  Google Scholar 

  13. D. D. Pukale, G. L. Maddikeri, P. R. Gogate, et al., Ultrason. Sonochem. 22, 278 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. A. I. Yusevich, M. A. Timoshkina, and E. I. Grushova, Pet. Chem. 50, 231 (2010).

    Article  Google Scholar 

  15. M. A. Timoshkina, A. I. Yusevich, S. G. Mikhalenok, and N. R. Prokopchuk, Pet. Chem. 54, 111 (2014).

    Article  CAS  Google Scholar 

  16. M. A. Timoshkina and A. I. Yusevich, Tr. BGTU, Ser. 2: Khim Tekhnol., Biotekhnol., Geoekol. 1, 234 (2012)

    Google Scholar 

  17. A. I. Yusevich and M. A. Timoshkina, Khim. Tekhnol. Topl. Masel, No. 3, 3 (2013).

    Google Scholar 

  18. M. A. Kopytov, S. V. Boyar, and A. K. Golovko, AIP Conf. Proc. 2051, 020131 (2018).

    Article  CAS  Google Scholar 

  19. M. A. Kopytov, D. E. Dmitriev, and A. K. Golovko, ACS Natl. Meet. Book Abstr., 1155 (2009).

  20. M. A. Kopytov, A. K. Golovko, N. P. Kirik, and A. G. Anshits, Pet. Chem. 53, 14 (2013).

    Article  CAS  Google Scholar 

  21. A. K. Golovko, M. A. Kopytov, O. M. Sharonova, et al., Catal. Ind. 7, 293 (2015).

    Article  Google Scholar 

  22. D. Wang, L. Jin, Y. Li, et al., Energy 162, 542 (2018).

    Article  CAS  Google Scholar 

  23. D. Wang, L. Jin, Y. Li, et al., Fuel 239, 764 (2019).

    Article  CAS  Google Scholar 

  24. Y. Ma, Q. Wang, X. Sun, et al., Renew. Energy 107, 522 (2017).

    Article  CAS  Google Scholar 

  25. M. Hosseinpour, S. Fatemi, and S. J. Ahmadi, Fuel 159, 538 (2015).

    Article  CAS  Google Scholar 

  26. D. Wang, L. Jin, Y. Li, and H. Hu, Fuel 210, 803 (2017).

    Article  CAS  Google Scholar 

  27. E. G. Telyashev, O. P. Zhurkin, R. R. Vezirov, et al., Khim. Tverd. Topl. 33 (5), 57 (1991).

    Google Scholar 

  28. S. Gan, H. K. Ng, C. W. Ooi, et al., Bioresour. Technol. 101, 7338 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. G. A. N. Mengyu, P. A. N. Deng, M. A. Li, et al., Chin. J. Chem. Eng. 17, 83 (2009).

    Article  Google Scholar 

  30. P. Patil, S. Deng, J. I. Rhodes, and P. J. Lammers, Fuel 89, 360 (2010).

    Article  CAS  Google Scholar 

  31. O. M. Sharonova, N. N. Anshits, L. A. Solovyov, et al., Fuel 111, 332 (2013).

    Article  CAS  Google Scholar 

  32. International Center for Diffraction Data, ICDD PDF 19-629. www.icdd.com. Accessed May 13, 2012.

  33. International Center for Diffraction Data, ICDD PDF 33-664. www.icdd.com. Accessed May 13, 2012.

  34. M. A. Kopytov, A. K. Golovko, N. P. Kirik, and A. G. Anshits, Solid Fuel Chem. 47, P. 114 (2013).

    Article  CAS  Google Scholar 

  35. M. A. Kopytov and A. K. Golovko, Izv. Tomsk. Politekh. Univ. 315, 83 (2009).

    Google Scholar 

  36. M. A. Kopytov and A. K. Golovko, Russ. J. Phys. Chem. B 4, 1228 (2010).

    Article  Google Scholar 

  37. M. A. Kopytov and A. K. Golovko, Solid Fuel Chem. 47, 370 (2013).

    Article  CAS  Google Scholar 

  38. V. F. Kam’yanov and G. F. Bol’shakov, Neftekhimiya 24, 450 (1984).

    Google Scholar 

  39. V. F. Kam’yanov and G. F. Bol’shakov, Neftekhimiya 24, 443 (1984).

    Google Scholar 

  40. V. F. Kam’yanov and G. F. Bol’shakov, Neftekhimiya 24, 460 (1984).

    Google Scholar 

  41. S. Ko and C. Huh, J. Pet. Sci. En. 172, 97 (2018).

    Google Scholar 

  42. N. N. Nassar, A. Hassan, L. Carbognani, et al., Fuel 95, 257 (2012).

    Article  CAS  Google Scholar 

  43. N. Setoodeh, P. Darvishi, and A. Lashanizadegan, J. Disper. Sci. Technol. 39, 711 (2018).

    CAS  Google Scholar 

  44. B. J. Tarboush and M. M. Husein, Fuel Process. Technol. 133, 120 (2015).

    Article  CAS  Google Scholar 

  45. Y. Y. Kalishyn, I. B. Bychko, A. I. Trypolskyi, and P. E. Strizhak, Theor. Exp. Chem. 53, 199 (2017).

    Article  CAS  Google Scholar 

  46. X. Dupain, D. J. Costa, C. J. Schaverien, et al., Appl. Catal., B 72, P 44 (2007).

    Article  CAS  Google Scholar 

  47. M. A. Kopytov and A. K. Golovko, Pet. Chem. 57, 39 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment of the Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, project no. V.46.2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kopytov.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this paper.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopytov, M.A., Boyar, S.V. & Mozhaiskaya, M.V. Thermal Transformations of Petroleum Residue Components in the Presence of Power-Plant Flyash Ferrospheres and Sunflower Oil. Pet. Chem. 60, 348–357 (2020). https://doi.org/10.1134/S096554412003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412003010X

Keywords:

Navigation