Skip to main content
Log in

Hydrothermal Transformations of Organic Matter of Carbon-Rich Domanik Rock in Carbon Dioxide Environment at Different Temperatures

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The influence of temperature on the nature of transformation of organic matter (OM) of carbon-rich rocks from Upper Devonian Semilukian–Mendymian (domanik) deposits of the Berezovskaya area of the Romashkino oilfield in hydrothermal processes has been studied. The experiments have been carried out at temperatures of 200, 250, 300, and 350°C in a CO2 medium in the presence of water in an amount of 30% of rock mass in the reaction system. The yield and changes in the component, structural-group, and hydrocarbon-group composition of extracts obtained from rocks before and after hydrothermal experiments have been evaluated. It has been established that at temperatures of 300 and 350°C, high-molecular-weight components and insoluble kerogen undergo degradation processes, leading to a noticeable increase in the concentration of free hydrocarbons in the rock and their more complete extraction from the rocks. By the nature of molecular-mass distribution of normal and isoprenoid alkanes, the extracts from the rocks are similar to oils of the A1 and A2 types (according to the chemical classification by A.A. Petrov) from productive formations of the Devonian and Carboniferous deposits of the Romashkino field. The treatment of the domanik rock at lower temperatures of 200 and 250°C facilitates more intensive recovery of free hydrocarbons from the rock, without significantly affecting the structure of kerogen by destructive processes. The influence of temperature on the phase transformations of asphaltenes and their paramagnetic properties, as well as on the composition of biomarker hydrocarbons associated with the genotype of original OM and lithology and maturity of possible oil producing strata, has been revealed. It has been shown that carbonate–siliceous source rocks of domanik deposits of the Romashkino field can become an additional source of petroleum hydrocarbons in the case of development using hydrothermal technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. L. Garanina, Probl. Nats. Strateg., No. 4 (25) , 185 (2014).

  2. V. V. Anan’ev, V. M. Smelkov, and N. V. Pronin, Geol. Nefti Gaza, No. 1, 32 (2007).

    Google Scholar 

  3. T. A. Kiryukhina, N. P. Fadeeva, A. V. Stupakova, et al., Geol. Nefti Gaza, No. 3, 76 (2013).

    Google Scholar 

  4. Q. R. Passey, M. M. Thomas, and K. M. Bohacs, RU Patent No. 2263774 (2005). http://ntpo.com/patents_gas/gas_3/gas_104.shtml. Accessed February 4, 2015.

  5. K. A. Shchekoldin, Candidate’s Dissertation in Engineering (Moscow, 2016) [in Russian].

  6. R. S. Khisamov, Burenie Neft, No. 1, 40 (2015).

    Google Scholar 

  7. H. Wang, F. Dai, Y. Yang, et al. Energy Fuels 31, 4353 (2017).

    Article  CAS  Google Scholar 

  8. R. S. Khisamov, I. S. Zakirov, E. F. Zakharova, et al., Neft. Khoz., No. 11, 68 (2018).

  9. R. S. Khisamov, V. G. Bazarevskaya, V. F. Yartiev, et al., Neft. Khoz., No. 7, 10 (2015).

  10. R. F. Khusainov, N. A. Nazimov, N. F. Gumarov, et al., Georesursy 2 (4), 14 (2015).

    Article  Google Scholar 

  11. O. V. Kizim, in Proceedings of Scientific-and-Practical Youth Conference of the Tatarian Petroleum Research and Design Institute (TatNIPIneft’),2014. www.tatnipi.ru/sms.2014.1.htm. Accessed February 13, 2018.

  12. Z. S. Idiyatullina, Candidate’s Dissertation in Engineering (Bugul’ma, 2017) [in Russian]. https://rogtecmagazine.com/?lang=ru

  13. B. Tissot and D. Welte, Petroleum Formation and Occurrence (Springer, Heidelberg, 1978).

    Book  Google Scholar 

  14. E. I. Taranenko, A. D. Tarsis, and M. Yu. Khakimov, Geol. Nefti Gaza, No. 4, 46 (2000).

    Google Scholar 

  15. J. R. Disnar, B. Guillet, D. Keravis, et al., Org. Geochem. 34, 327 (2003).

    Article  CAS  Google Scholar 

  16. M. Vandenbroucke, Oil Gas Sci. Technol.–Rev. IFP 58, 243 (2003).

    CAS  Google Scholar 

  17. D. A. Bushnev and N. S. Burdel’naya, Pet. Chem. 53, 146 (2013).

    Article  Google Scholar 

  18. M. Kravchenko, N. M. Dmitriev, A. V. Muradov, et al., Georesursy 18, 330 (2016).

    Article  CAS  Google Scholar 

  19. R. R. Ibatullin, Georesursy 19, 176 (2017).

    Article  Google Scholar 

  20. R. S. Khisamov, V. V. Akhmetgareev, S. S. Khakimov, and Sh. Sh. Kenzhekhanov, Georesursy 19, 186 (2017).

    Article  CAS  Google Scholar 

  21. S. B. Ostroukhov, I. N. Plotnikova, F. F. Nosova, and F. F. Pronin, Georesursy 1 (3), 42 (2015).

    Article  Google Scholar 

  22. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, et al., Khim. Tekhnol. Topl. Masel, No. 3, 6 (2014).

    Google Scholar 

  23. G. N. Gordadze, Thermolysis of Organic Matter in Oil and Gas Exploration Geochemistry (IGiRGI, Moscow, 2002) [in Russian].

  24. G. P. Kayukova, A. M. Kiyamova, A. N. Mikhailova, et al., Khim. Tekhnol. Topl. Masel, No. 2, 21 (2016).

    Google Scholar 

  25. G. P. Kayukova, A. N. Mikhailova, N. M. Khasanova, et al., Geofluids 2018, Article ID 9730642 (2018). https://doi.org/10.1155/2018/9730642

  26. V. G. Bazarevskaya, Georesursy, No. 2, 9 (2006).

  27. G. P. Kayukova, D. A. Feoktistov, N. V. Pronin, and A. A. Eskin, Neft. Khoz., No. 12, 86 (2017).

  28. T. A. Shardanova, N. P. Fadeeva, A. N. Khomyak, and V. L. Kosorukov, Otech. Geol., No. 3, 74 (2017).

  29. G. P. Kayukova, N. M. Khasanova, D. T. Gabdrakhmanov, et al., Aktual. Probl. Nefti Gaza, No. 4, 19 (2017). http://oilgasjournal.ru.

  30. Oil Recovery (Recovery Factor (RF)) and Methods of Enhanced Oil Recovery (EOR). https://neftegaz.ru/tech-library/tekhnologii/141811-nefteotdacha-koeffitsient-izvlecheniya-nefti-kin-i-metody-povysheniya-nefteotdachi-mun. Accessed June 20, 2019.

  31. A. V. Vakhin, V. P. Morozov, S. A. Sitnov, et al., Khim. Tekhnol. Topl. Masel, No. 6, 75 (2014).

    Google Scholar 

  32. L. V. Ivanova, R. Z. Safieva, and V. N. Koshelev, Vestn. Bashkir. Univ. 13, 869 (2008).

    Google Scholar 

  33. L. G. Gilinskaya, J. Struct. Chem. 49, 245 (2008).

    Article  CAS  Google Scholar 

  34. A. A. Petrov, Petroleum Hydrocarbons (Springer, Berlin, 1987).

    Book  Google Scholar 

  35. O. Yu. Batalin and N. G. Vafina, Mezhd. Zh. Prikl. Fundam. Issled., No. 10, 418 (2013).

  36. G. P. Kayukova, A. N. Mikhailova, I. P. Kosachev, et al., Khim. Tekhnol. Topl. Masel, No. 2, 33 (2018).

    Google Scholar 

  37. V. Yu. Artem’ev, E. B. Grigor’ev, and O. A. Shigidin, Vesti Gaz. Nauki, No. 1, 21 (2013).

    Google Scholar 

  38. R. N. Nasirov, Paramagnetism of Pre-Caspian Oils and Rocks (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  39. G. P. Kayukova, A. N. Mikhailova, I. P. Kosachev, et al., Pet. Chem. 59, 24 (2019).

    Article  CAS  Google Scholar 

  40. G. N. Gordadze and V. I. Tikhomirov, Geochem. Int. 43, 1108 (2005).

    Google Scholar 

  41. G. P. Kayukova, A. M. Minnegalieva, A. G. Romanov, et al., Pet. Chem. 46, 314 (2006).

    Article  Google Scholar 

  42. Yu. A. Kiseleva, T. P. Zheglova, M. V. Dakhnova, et al., Geol. Geofiz. 58, 384 (2017).

    Google Scholar 

  43. L. Schwark and F. Frimmel, Chem. Geol. 206, 231 (2004).

    Article  CAS  Google Scholar 

  44. M. B. Smirnov, N. P. Fadeeva, R. S. Borisov, and E. N. Poludetkina, Geochem. Int. 56, 812 (2018).

    Article  CAS  Google Scholar 

  45. G. P. Kayukova, L. E. Foss, D. A. Feoktistov, et al., Pet. Chem. 57, 657 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the staff of the Shared-Use Spectral Analytical Center for the Study of the Structure, Composition, and Properties of Substances and Materials at the Kazan Scientific Center of the Russian Academy of Sciences for technical support during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Kayukova.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayukova, G.P., Mikhailov, A.N., Kosachev, I.P. et al. Hydrothermal Transformations of Organic Matter of Carbon-Rich Domanik Rock in Carbon Dioxide Environment at Different Temperatures. Pet. Chem. 60, 278–290 (2020). https://doi.org/10.1134/S0965544120030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120030093

Keywords:

Navigation