Skip to main content
Log in

Thermal Transformations of Sulfur-Containing Components of Oxidized Vacuum Gas Oil

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A promising method is proposed for combining the oxidation and cracking of vacuum gas oil. The effect of the conditions of preliminary oxidation of vacuum gas oil on the thermal stability of its components and, accordingly, the quality of the products obtained during cracking have been studied. The oxidizing mixture consists of hydrogen peroxide and formic acid taken in a molar ratio of 3 : 4. It has been shown that oxidation with the subsequent heat treatment is an effective way to destroy sulfur compounds. The patterns of transformation features of sulfur compounds in the combined process are described using thiophene, benzothiophene, and dibenzothiophene homologues as an example. Further research in this area will significantly deepen the understanding of the laws governing the transformation of sulfur-containing compounds of vacuum distillates in oxidative and thermal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Weh and A. Klerk, Energy Fuel 31, 6607 (2017).

    Article  CAS  Google Scholar 

  2. M. H. Ibrahim, M. Hayyan, M. A. Hashim, and A. Hayyan, Renew. Sust. Energy Rev. 76, 1534 (2017).

    Article  CAS  Google Scholar 

  3. B. Pawelec, R. M. Navarro, J. M. Campos-Martin, and J. L. G. Fierro, Catal. Sci. Technol., No. 1, 23 (2011).

  4. M. N. Hossain, H. Ch. Park, and H. S. Choi, Catalysts, No. 9, 229 (2019).

    Article  Google Scholar 

  5. T. V. Rao, B. Sain, S. Kafola, et al., Energy Fuels 21, 3420 (2007).

    Article  CAS  Google Scholar 

  6. M. Tao, H. Zheng, J. Shi, et al., Catal. Surv. Asia 19, 257 (2015).

    Article  CAS  Google Scholar 

  7. J. Wang, D. Zhao, and K. Li, Energy Fuels 23, 3831 (2009).

    Article  CAS  Google Scholar 

  8. J. F. Palomeque-Santiago, R. Lopez-Medina, R. Oviedo-Roa, et al., Appl. Catal., B 236, 326 (2018).

    Article  CAS  Google Scholar 

  9. M.-C. Lu, L. C. C. Biel, M.-W. Wan, et al., Int. J. Green Energy 11, 833 (2014).

    Article  CAS  Google Scholar 

  10. A. V. Akopyan, D. A. Plotnikov, P. D. Polikarpova, et al., Pet. Chem. 59, 975 (2019).

    Article  CAS  Google Scholar 

  11. H. Liu, S. Bao, Z. Cai, et al., Chem. Eng. J. 317, 1092 (2017).

    Article  CAS  Google Scholar 

  12. Y.-Y. Liu, K. Leus, Zh. Sun, et al., Microporous Mesoporous Mater. 277, 245 (2019).

    Article  CAS  Google Scholar 

  13. A. Bazyari, A. A. Khodadadi, A. H. Mamaghani, et al., Appl. Catal., B 180, 65 (2016).

    Article  CAS  Google Scholar 

  14. H. Benbehani and M. K. Andari, Pet. Sci. Technol. 18, 51 (2000).

    Article  Google Scholar 

  15. X. Ma, K. Skanishi, T. Isoda, and I. Mochida, Fuel 76, 329 (1997).

    Article  CAS  Google Scholar 

  16. A. V. Akopyan, R. A. Fedorov, B. V. Andreev, et al., Russ. J. Appl. Chem. 91, 529 (2018).

    Article  CAS  Google Scholar 

  17. J. M. Campos-Martin, M. C. Capel-Sanchez, P. Perez-Presas, and J. L. G. Fierro, J. Chem. Technol. Biotechnol. 85, 879 (2010).

    Article  CAS  Google Scholar 

  18. R. L. AL Otaibi, D. Liu, X. Hou, et al., Appl. Petrochem. Res. 5, 355 (2015).

    Article  Google Scholar 

  19. Y. Li, Y. Zhang, P. Wu, et al., Catalysts 8, 639 (2018).

    Article  Google Scholar 

  20. A. E. S. Choi, S. Roces, N. Dugos, and M.-W. Wan, Fuel 205, 153 (2017).

    Article  CAS  Google Scholar 

  21. M. A. Safa, R. Al-Majren, T. Al-Shamary, et al., Fuel 194, 123 (2017).

    Article  CAS  Google Scholar 

  22. R. Javadli and A. Klerk, Appl. Petrochem. Res. 1, 3 (2012).

    Article  CAS  Google Scholar 

  23. Yu. A. Iovik, E. B. Krivtsov, and A. K. Golovko, Izv. Tomsk. Politekh. Univ., Inzh. Georesurs., No. 11, 52 (2018).

  24. V. F. Kam’yanov and G. F. Bol’shakov, Neftekhimiya 24, 450 (1984).

    Google Scholar 

  25. Yu. F. Patrakov, V. F. Kamyanov, and O. N. Fedyaeva, Fuel 84, 189 (2005).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the State Assignment of the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences (project V.46.2.2) and supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Iovik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovik, Y.A., Krivtsov, E.B. Thermal Transformations of Sulfur-Containing Components of Oxidized Vacuum Gas Oil. Pet. Chem. 60, 341–347 (2020). https://doi.org/10.1134/S0965544120030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120030081

Navigation