Skip to main content
Log in

The Origin of Asphaltenes and Main Trends in Evolution of Their Composition During Lithogenesis

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The composition and structure of bitumenoid asphaltenes of modern and fossil sediments has been studied using a set of instrumental methods (elemental and X-ray diffraction analyses, visible spectroscopy, NMR spectroscopy, EPR, electron microscopy), which made it possible to trace the evolution of the asphaltenes from their generation in diagenesis to degradation and transformation into kerogen under high catagenesis conditions. In diagenesis, protoasphaltenes are formed, which turn into asphaltenes as a result of catagenetic transformations. In apocatagenesis under severe thermobaric conditions at great depths, despite an overall decrease in bituminosity, the amount of hydrocarbons increases as a result of degradation of asphaltenes: molecules of organic compounds (occluded hydrocarbons) could be trapped and preserved in large cavities of the macromolecular structure of asphaltenes. Three generations of asphaltenes have been distinguished: early diagenetic (protoasphaltenes of modern sediments), mesocatagenetic (asphaltenes formed in the main catagenesis zone), and late catagenetic (asphaltenes produced under conditions of high temperatures and pressures).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. H. Castex, Resines et asphaltenes: Revolution en function des types de matiereorganique et de leurenfouissement (Institut Francais du Petrole, 1977).

    Google Scholar 

  2. I. Rubinstein, C. Spyckerelle, and O. Strausz, Geochem. Cosmochem. Acta 43, 1 (1979).

    Article  CAS  Google Scholar 

  3. S. R. Sergienko, Macromolecular Nonhydrocarbon Petroleum Components: Resins and Asphaltenes (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  4. V. F. Kam’yanov, R. S. Aksenov, and V. I. Titov, Heteroatomic Components of Crude Oils (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  5. R. P. Philp and T. D. Gilbert, Geochem. Cosmochem. Acta 49, 1421 (1985).

    Article  CAS  Google Scholar 

  6. G. N. Gordadze and Al. A. Petrov, Geol. Nefti Gaza, No. 3, 33 (1986).

    Google Scholar 

  7. I. V. Goncharov, Geochemistry of Western Siberia Oils (Nedra, Moscow, 1987) [in Russian].

    Google Scholar 

  8. G. N. Gordadze and G. V. Rusinova, in Proceedings of V International Conference on Oil and Gas Chemistry (Tomsk, 2003), p. 127 [in Russian].

  9. A. K. Golovko, L. V. Gorbunova, and V. F. Kam’yanov, Geol. Geofiz. 51, 364 (2010).

    CAS  Google Scholar 

  10. Yu. M. Ganeeva, T. N. Yusupova, and G. V. Romanov, Usp. Khim. 80, 1035 (2011).

    Article  Google Scholar 

  11. G. N. Gordadze, M. V. Giruts, V. N. Koshelev, and T. N. Yusupova, Pet. Chem. 55, 22 (2015).

    Article  CAS  Google Scholar 

  12. L. R. Snowdon, J. K. Volkman, Z. Zhang, et al., Org. Geochem. 91, 3 (2016).

    Article  CAS  Google Scholar 

  13. A. E. Kontorovich and L. S. Borisova, Geol. Geofiz., No. 5, 3 (1989).

  14. A. E. Kontorovich and L. S. Borisova, Geokhimiya, No. 11, 1660 (1994).

  15. L. S. Borisova, Geol. Geofiz. 45, 884 (2004).

    CAS  Google Scholar 

  16. L. S. Borisova, Geol. Nefti Gaza, No. 6, 75 (2016).

    Google Scholar 

  17. A. E. Kontorovich, L. S. Borisova, and V. N. Melenevskii, Geokhimiya, No. 10, 1423 (1987).

  18. A. E. Kontorovich, V. P. Danilova, A. N. Fomin, et al., Izv. TPU, Geol. Razrab. Neft. Gaz. Mestorozhd. 305 (8), 45 (2002).

    Google Scholar 

  19. L. S. Borisova, in Lithological and Geochemical Bases of Petroleum Potential Forecast (VNIGRI, St. Petersburg, 2008), p. 93 [in Russian].

    Google Scholar 

  20. V. A. Kashirtsev, Geol. Geofiz., No. 8, 1211 (2018).

  21. L. S. Borisova, Geol. Geofiz. 58, 366 (2017).

    Google Scholar 

  22. Modern Analytical Methods in Organic Geochemistry, Ed. by A. E. Kontorovich (SNIIGGiMS, Novosibirsk, 1973) [in Russian].

  23. A. E. Kontorovich, V. P. Danilova, and A. S. Fomichev, Geochemistry of Bitumenoids in Subsurface Waters of Western Siberia Oil-and-Gas Basin (SNIIGGiMS, Novosibirsk, 1976), Issue 231, p. 3 [in Russian].

  24. L. S. Borisova and A. E. Kontorovich, Guidelines for the Study of Asphaltenes for Source Rocks Diagnostics and Quantitative Assessment of the Prospects of Oil and Gas (SNIIGGiMS, Novosibirsk, 1991) [in Russian].

  25. L. S. Borisova, Introduction to Geochemistry of Macromolecular Petroleum Components (NGU, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  26. A. E. Kontorovich, Geochemical Methods for Quantitative Assessment of the Oil and Gas Potential (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  27. B. P. Tissot and D. H. Welte, Petroleum Formation and Occurrence (Springer, Berlin, 1978).

    Book  Google Scholar 

  28. L. S. Borisova, A. E. Kontorovich, and A. S. Fomichev, Advances in Organic Geochemistry, Ed. by A. E. Kontorovich (OIT INGG SO RAN, Novosibirsk, 2010), p. 60 [in Russian].

    Google Scholar 

  29. O. A. Radchenko and L. S. Sheshina, Tr. VNIGRI, No. 1, 274 (1955).

    Google Scholar 

  30. M. M. Kolganova and A. E. Kontorovich, Geol. Neftegaz. Raionov Zap.-Sib. Nizm.: Tr. SNIIGGiMS, No. 47, 184 (1966).

    Google Scholar 

  31. L. S. Borisova, Yu. G. Gladkikh, and M. M. Gubina, in Modern Methods for Determination of Metals in Crude Oils, Bitumens, and Their Processing Products (Leningrad, 1991), p. 15 [in Russian].

    Google Scholar 

  32. M. M. Gubina, in Organic Geochemistry of Source Rocks of Western Siberia (SO RAN, Novosibirsk, 1999), p. 144 [in Russian].

    Google Scholar 

  33. A. E. Kontorovich, Essays of Naphthidogenesis Theory (SO RAN, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  34. E. M. Galimov and L. A. Kodina, Organic Matter and Gases in Sedimentary Strata of the World Ocean Bottom (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  35. V. S. Veselovskii, Fossil Fuel Testing (Gos. Izd. Geologicheskoi Literatury, Moscow, 1951) [in Russian].

    Google Scholar 

  36. T. G. Chernova and E. P. Shishenina, Geokhimiya, No. 10, 1526 (1979).

  37. I. D. Polyakova, G. Ch. Borukaev, G. N. Perozio, and M. F. Sokolova, Dokl. Akad. Nauk 345, 236 (1995).

    CAS  Google Scholar 

  38. A. E. Kontorovich, V. P. Danilova, and V. M. Dindoin, Dokl. Akad. Nauk SSSR, Ser. Geol. 209, 1431 (1973).

    CAS  Google Scholar 

  39. A. E. Kontorovich, I. D. Polyakova, M. M. Kolganova, and E. I. Soboleva, Sov. Geol., No. 7, 26 (1988).

  40. Guidelines for the Use of the Pyrolysis Method in Organic Geochemistry, Ed. by A. E. Kontorovich (SNIIGiMS, Novosibirsk, 1985) [in Russian].

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-05-00786, and the Federal Basic Research Program, project no. 0331-2019-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Borisova.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, L.S. The Origin of Asphaltenes and Main Trends in Evolution of Their Composition During Lithogenesis. Pet. Chem. 59, 1118–1123 (2019). https://doi.org/10.1134/S0965544119100037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119100037

Navigation