Skip to main content
Log in

Enhancement of Mass Transfer Through a Homogeneous Anion-Exchange Membrane in Limiting and Overlimiting Current Regimes by Screening Part of Its Surface with Nonconductive Strips

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A series of anion-exchange membranes based on a Neosepta AMX-Sb homogeneous membrane (Japan) have been studied by applying parallel nonconducting strips of a 100 to 600 μm width with the interstrip distance ranging from 400 to 1900 μm. The current–voltage characteristics of the membranes and the pH of a NaCl solution (of 0.02 mol/L concentration) have been measured in the course of passing the solution through the desalination compartment of a flow-through electrodialysis cell. Two sets of membranes with a nonconducting surface fraction snc of 5 to 60%, in which the pattern steps on the surface are 1000 and 2000 μm, have been considered. It has been shown that the limiting current density, ilim, depends on the nonconducting surface fraction: ilim exceeds the corresponding value for the initial membrane in the case when snc is in the range from 5 to 20%, reaching a maximum approximately at snc = 10% followed by a decrease with the further increase in snc. At snc = 10%, the value of ilim is greater when the inhomogeneity step is 2000 μm. It has been assumed that the growth in both the limiting current density and the rate of mass transfer through the modified membranes is due to electroconvection. The obtained experimental results correlate well with known mathematical models describing ion transport in membrane systems with allowance for electroconvection in the case of homogeneous and heterogeneous membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J.-H. Choi and S.-H. Moon, J. Membr. Sci. 191, 225 (2001).

    Article  CAS  Google Scholar 

  2. E. Volodina, N. Pismenskaya, V. Nikonenko, et al., J. Colloid Interface Sci. 285, 247 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Y. Tong, S. Bohm, and M. Song, Appl. Surf. Sci. 424, 72 (2017).

    Article  CAS  Google Scholar 

  4. C. Amatore, J. M. Saveant, and D. Tessier, J. Electroanal. Chem. 147, 39 (1983).

    Article  CAS  Google Scholar 

  5. C. Amatore, C. Pebay, C. Sella, and L. Thouin, ChemPhysChem 13, 1562 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. K. R. Ward, N. S. Lawrence, R. S. Hartshorne, and R. G. Compton, Phys. Chem. Chem. Phys. 14, 7264 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 65, 1 (2002).

    Google Scholar 

  8. V. I. Zabolotskii, V. V. Bugakov, M. V. Sharafan, and R. Kh. Chermit, Russ. J. Electrochem. 48, 650 (2012).

    Article  CAS  Google Scholar 

  9. M. Svoboda, J. Benes, L. Vobecka, and Z. Slouka, J. Membr. Sci. 525, 195 (2017).

    Article  CAS  Google Scholar 

  10. V. I. Vasil’eva, N. A. Kranina, M. D. Malykhin, et al., Poverkhnost’, No. 2, 51 (2013).

    Google Scholar 

  11. E. M. Akberova, E. Yu. Kozhukhova, A. M. Yatsev, and V. I. Vasil’eva, Kondens. Sredy Mezhfazn. Granitsy 19, 158 (2017).

    Google Scholar 

  12. S. M. Davidson, M. Wessling, and A. Mani, Sci. Rep. 6, 22505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. I. Zabolotskii, L. Novak, A. V. Kovalenko, et al., Pet. Chem. 57, 779 (2017).

    Article  Google Scholar 

  14. S. S. Dukhin and N. A. Mishchuk, Kolloid Zh. 49, 1197 (1987).

    CAS  Google Scholar 

  15. I. Rubinstein, Phys. Fluids A 3, 2301 (1991).

    Article  CAS  Google Scholar 

  16. S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).

    Article  CAS  Google Scholar 

  17. N. A. Mishchuk, Colloids Surf., A 140, 75 (1998).

    Article  CAS  Google Scholar 

  18. R. Kwak, G. Guan, W. K. Peng, and J. Han, Desalination 308, 138 (2013).

    Article  CAS  Google Scholar 

  19. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  20. V. I. Vasil’eva, A. V. Zhil’tsova, M. D. Malykhin, et al., Russ. J. Electrochem. 50, 134 (2014).

    Google Scholar 

  21. E. Korzhova, N. Pismenskaya, D. Lopatin, et al., J. Membr. Sci. 500, 161 (2016).

    Article  CAS  Google Scholar 

  22. Y. Mizutani, J. Membr. Sci. 49, 121 (1990).

    Article  CAS  Google Scholar 

  23. N. A. Mel’nik, K. A. Shevtsova, N. D. Pis’menskaya, and V. V. Nikonenko, Kondens. Sredy Mezhfazn. Granitsy 12, 233 (2010).

    Google Scholar 

  24. J.-H. Choi and S.-H. Moon, J. Colloid Interface Sci. 265, 93 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. R. J. Williamson. http://digitalcommons.fiu.edu/etd/3055.

  26. D. Golubenko, Y. Karavanova, and A. Yaroslavtsev, J. Electroanal. Chem. 777, 1 (2016).

    Article  CAS  Google Scholar 

  27. N. A. Mel’nik, Extended Abstract of Candidate Dissertation in Chemistry (Krasnodar, 2011).

  28. M. K. Urtenov, A. M. Uzdenova, A. V. Kovalenko, et al., J. Membr. Sci. 447, 190 (2013).

    Article  CAS  Google Scholar 

  29. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012).

    Article  CAS  Google Scholar 

  30. V. V. Gil, M. A. Andreeva, N. D. Pismenskaya, et al., Pet. Chem. 56, 440 (2016).

    Article  CAS  Google Scholar 

  31. E. I. Belova, G. Yu. Lopatkova, N. D. Pismenskaya, et al., J. Phys. Chem. B 110, 13458.

  32. E. Güler, W. van Baak, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 455, 254 (2014).

    Article  CAS  Google Scholar 

  33. K. A. Nebavskaya, V. V. Sarapulova, K. G. Sabbatovskiy, et al., J. Membr. Sci. 523, 36 (2017).

    Article  CAS  Google Scholar 

  34. C. Larchet, S. Nouri, B. Auclair, et al., Adv. Colloid Interface Sci. 139, 45 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. V. V. Nikonenko, V. I. Vasil’eva, E. M. Akberova, et al., Adv. Colloid Interface Sci. 235, 233 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. V. V. Umnov, N. V. Shel’deshov, and V. I. Zabolotskii, Russ. J. Electrochem. 35, 871 (1999).

    CAS  Google Scholar 

  37. V. S. Pham, Z. Li, K. M. Lim, et al., Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 86, 1 (2012).

    Google Scholar 

  38. N. A. Mishchuk, Adv. Colloid Interface Sci. 160, 16 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2238 (2000).

    CAS  Google Scholar 

  40. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, New York, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work, performed at the Russian–French International Associated Laboratory of Ion-Exchange Membranes and Processes, was supported by the Russian Foundation for Basic Research, project no. 16-38-00794 mol_a. The authors thank the Core Facility “Environmental Analytical Center” of the Kuban State University (unique identifier RFMEFI59317Х0008) for providing their equipment.

The authors thank Dr. A.E. Kozmai for assistance in preparing drawings.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Nebavsky or V. V. Nikonenko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebavskaya, K.A., Butylskii, D.Y., Moroz, I.A. et al. Enhancement of Mass Transfer Through a Homogeneous Anion-Exchange Membrane in Limiting and Overlimiting Current Regimes by Screening Part of Its Surface with Nonconductive Strips. Pet. Chem. 58, 780–789 (2018). https://doi.org/10.1134/S0965544118090086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118090086

Keywords:

Navigation