Skip to main content
Log in

Synthesis of Vanadium Catalysts Supported on Cerium Containing TiO2 Nanotubes for the Oxidative Dehydrogenation of Propane

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Cerium containing TiO2 nanotubes (CeTNTs) were successfully synthesized through the hydrothermal method and applied as support for vanadium catalyst in the oxidative dehydrogenation of propane. The impregnation method was employed to load 2, 5 and 8 wt % vanadium on the CeTNT surface. The catalysts were labeled as xV/CeTNT which x refers to the amount of vanadium loading. For a comparison, pure TNT was also synthesized and impregnated with 5 wt % vanadium. Based on TGA, XRD and TEM analyses, it was concluded that the addition of Ce increased the thermal stability of TNT. The Raman results showed that the 5V/CeTNT sample with a higher surface area hosted a higher number of monomeric VOx species compared to 5V/TNT. On the other hand, it was shown that the population of monomeric VOx species decreased as the vanadium loading increased. Catalytic results showed that propane conversion increased while propylene selectivity decreased as the vanadium loading increased. The best catalytic performance belonged to the 5V/CeTNT sample with propylene yield of about 10.6 wt % at the reaction temperature of 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Testova, A. S. Shalygin, V. V. Kaichev, T. S. Glazneva, E. A. Paukshtis, and V. N. Parmon, Appl. Catal., A 505, 441 (2015).

    Article  CAS  Google Scholar 

  2. A. Z. Varzaneh, J. Towfighi, S. Sahebdelfar, and H. Bahrami, J. Anal. Appl. Pyrolysis 121, 11 (2016).

    Article  CAS  Google Scholar 

  3. I. Ascoop, V. V. Galvita, K. Alexopoulos, M.-F. Reyniers, P. van der Voort, V. Bliznuk, and G. B. Marin, J. Catal. 335, 1 (2016).

    Article  CAS  Google Scholar 

  4. H. Zhang, S. Cao, Y. Zou, Yi-Meng Wang, X. Zhou, Y. Shen, and X. Zheng, Catal. Commun. 45, 158 (2014).

    Article  CAS  Google Scholar 

  5. M. S. Moghaddam and J. Towfighi, J. Chem. Petrol. Eng. 51, 2 (2017).

    Google Scholar 

  6. R. Bulánek, A. Kalužová, M. Setnicka, A. Zukal, P. Cicmanec, and J. Mayerová, Catal. Today 179, 149 (2012).

    Article  CAS  Google Scholar 

  7. F. Cavani, N. Ballarini, and A. Cericola, Catal. Today. 127, 113 (2007).

    Article  CAS  Google Scholar 

  8. G. M. Neelgund, S. A. Shivashankar, B. K. Chethana, P. P. Sahoo, and K. J. Rao, Bull. Mater. Sci. 34, 1163 (2011).

    Article  CAS  Google Scholar 

  9. A. H. Shahbazi Kootenaei, J. Towfighi, A. Khodadadi, and Y. Mortazavi, Appl. Surf. Sci. 298, 26 (2014).

    Article  CAS  Google Scholar 

  10. C. L. Wong, Y. N. Tan, and A. R. Mohamed, J. Environ. Manage. 92, 1669 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. M. N. Taylor, A. F. Carley, T. E. Davies, and S. H. Taylor, Top. Catal. 52, 1660 (2009).

    Article  CAS  Google Scholar 

  12. J. Liu, Q. Sun, Y. Fu, H. Zhao, A. Auroux, and J. Shen, Catal. Lett. 126, 155 (2008).

    Article  CAS  Google Scholar 

  13. V.-K. Nguyen, J.-H. Park, and C.-H. Shin, Korean J. Chem. Eng. 31, 582 (2014).

    Article  CAS  Google Scholar 

  14. J. Liu, Y. Fu, Q. Sun, and J. Shen, Microporous Mesoporous Mater. 116, 614 (2008).

    Article  CAS  Google Scholar 

  15. J.-C. Xu, M. Lu, X.-Y. Guo, and H.-L. Li, J. Mol. Catal. A: Chem. 226, 123 (2005).

    Article  CAS  Google Scholar 

  16. L. Xiong, Q. Zhong, Q. Chen, and S. Zhang, Korean J. Chem. Eng. 30, 836 (2013).

    Article  CAS  Google Scholar 

  17. M. A. Cortes-Jácome, M. Morales, C. Angeles Chavez, L. F. Ramírez-Verduzco, E. López-Salinas, and J. A. Toledo-Antonio, Chem. Mater. 19, 6605 (2007).

    Article  CAS  Google Scholar 

  18. X. Wang, G. Zhou, Z. Chen, W. Jiang, and H. Zhou, Microporous Mesoporous Mater. 223, 261 (2016).

    Article  CAS  Google Scholar 

  19. V. Fornés, C. López, H. H. López, and A. Martínez, Appl. Catal., A 249, 345 (2003).

    Article  CAS  Google Scholar 

  20. D. A. Bulushev, L. Kiwi-Minsker, F. Rainone, A. Renken, J. Catal. 205, 115 (2002).

    Article  CAS  Google Scholar 

  21. S. Chen, F. Ma, A. Xu, L. Wang, F. Chen, and W. Lu, Appl. Surf. Sci. 289, 316 (2014).

    Article  CAS  Google Scholar 

  22. D. D. Eley, H. Pines, and W. O. Haag, Advances in Catalysis, Vol. 40 (Academic, San Diego, Calif., 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Moghaddam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, M.S., Towfighi, J. Synthesis of Vanadium Catalysts Supported on Cerium Containing TiO2 Nanotubes for the Oxidative Dehydrogenation of Propane. Pet. Chem. 58, 659–665 (2018). https://doi.org/10.1134/S0965544118080170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118080170

Keywords

Navigation