Skip to main content
Log in

Chernoff Iterations as an Averaging Method for Random Affine Transformations

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For functions defined on a finite-dimensional vector space, we study compositions of their independent random affine transformations that represent a noncommutative analogue of random walks. Conditions on iterations of independent random affine transformations are established that are sufficient for convergence to a group solving the Cauchy problem for an evolution equation of shift along the averaged vector field and sufficient for convergence to a semigroup solving the Cauchy problem for the Fokker–Planck equation. Numerical estimates for the deviation of random iterations from solutions of the limit problem are presented. Initial-boundary value problems for differential equations describing the evolution of functionals of limit random processes are formulated and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulas,” Izv. Math. 80 (6), 1131–1158 (2016).

    Article  MathSciNet  Google Scholar 

  2. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas and the law of large numbers for random one-parameter semigroups,” Proc. Steklov Inst. Math. 306, 196–211 (2019).

    Article  MathSciNet  Google Scholar 

  3. J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Random quantization of Hamiltonian systems,” Dokl. Math. 103 (3), 122–126 (2021).

    Article  MathSciNet  Google Scholar 

  4. L. A. Borisov, Yu. N. Orlov, and V. Zh. Sakbaev, “Chernoff equivalence for shift operators, generating coherent states in quantum optics,” Lobachevskii J. Math. 39 (6), 742–746 (2018).

    Article  MathSciNet  Google Scholar 

  5. P. Chernoff, “Note on product formulas for operator semigroups,” J. Funct. Anal. 2 (2), 238–242 (1968).

    Article  MathSciNet  Google Scholar 

  6. V. D. Lakhno, “Translation-invariant bipolarons and the problem of high temperature superconductivity,” Solid State Commun. 152, 621 (2012).

    Article  Google Scholar 

  7. V. B. Sultanov, “On the possibility of bipolaronic states in DNA,” Mol. Biophys. 56, 210 (2011).

    Article  Google Scholar 

  8. N. I. Kashirina and V. D. Lakhno, “Continual model of one-dimensional Holstein bipolaron in DNA,” Mat. Biol. Bioinf. 9, 430–437 (2014).

    Article  Google Scholar 

  9. H. Fröhlich, “On the theory of superconductivity: The one-dimensional case,” Proc. Soc. A 223, 296–305 (1954).

    MATH  Google Scholar 

  10. R. Sh. Kalmetev, Yu. N. Orlov, and V. Zh. Sakbaev, “Generalized coherent states representation,” Lobachevskii J. Math. 42 (11), 2608–2614 (2021).

    Article  MathSciNet  Google Scholar 

  11. Yu. N. Orlov and V. V. Vedenyapin, “Special polynomials in problems of quantum optics,” Mod. Phys. Lett. B 9 (5), 291–298 (1995).

    Article  MathSciNet  Google Scholar 

  12. M. A. Berger, “Central limit theorem for products of random matrices,” Trans. Am. Math. Soc. 285 (2), 777–803 (1984).

    Article  MathSciNet  Google Scholar 

  13. K. Yu. Zamana, V. Zh. Sakbaev, and O. G. Smolyanov, “Stochastic processes on the group of orthogonal matrices and evolution equations describing them,” Comput. Math. Math. Phys. 60 (10), 1686–1700 (2020).

    Article  MathSciNet  Google Scholar 

  14. S. Bonaccorci, F. Cottini, and D. Mugnolo, “Random evolution equation: Well-posedness, asymptotics, and applications to graphs,” Appl. Math. Optim. 84, 2849–2887 (2021). https://doi.org/10.1007/s00245-020-09732-w

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Furstenberg, “Non-commuting random products,” Trans. Am. Math. Soc. 108 (3), 377–428 (1963).

    Article  Google Scholar 

  16. V. N. Tutubalin, “Some theorems of the type of the strong law of large numbers,” Theory Probab. Appl. 14 (2), 313–319 (1969).

    Article  MathSciNet  Google Scholar 

  17. V. N. Tutubalin, “On limit theorems for the product of random matrices,” Theory Probab. Appl. 10 (1), 15–27 (1965).

    Article  MathSciNet  Google Scholar 

  18. A. V. Letchikov, “Conditional limit theorem for products of random matrices,” Sb. Math. 186 (3), 371–389 (1995).

  19. V. Yu. Protasov, “Invariant functions for the Lyapunov exponents of random matrices,” Sb. Math. 202 (1), 101–126 (2011).

    Article  MathSciNet  Google Scholar 

  20. Yu. N. Orlov, V. Zh. Sakbaev, and E. V. Shmidt, “Operator approach to weak convergence of measures and limit theorems for random operators,” Lobachevskii J. Math. 42 (10), 2413–2426 (2021).

    Article  MathSciNet  Google Scholar 

  21. K. Yu. Zamana, “Averaging of random orthogonal transformations of domain of functions,” Ufa Math. J. 13 (4), 23–40 (2021).

    Article  MathSciNet  Google Scholar 

  22. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sh. Kalmetev, Yu. N. Orlov or V. Zh. Sakbaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmetev, R.S., Orlov, Y.N. & Sakbaev, V.Z. Chernoff Iterations as an Averaging Method for Random Affine Transformations. Comput. Math. and Math. Phys. 62, 996–1006 (2022). https://doi.org/10.1134/S0965542522060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522060100

Keywords:

Navigation