Skip to main content
Log in

Construction and Analysis of Explicit Adaptive One-Step Methods for Solving Stiff Problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper considers the construction of adaptive methods based on the explicit Runge–Kutta stages. The coefficients of these methods are adjusted to the problem being solved, using component-wise estimates of the eigenvalues of the Jacobi matrix with the maximum absolute values. Such estimates can be easily obtained at the stages of the explicit method, which practically does not require additional calculations. The effect of computational errors and stiffness of the problem on the stability and accuracy of the numerical solution is studied. The analysis allows one to construct efficient explicit methods that are not inferior to implicit methods in solving many stiff problems. New nested pairs of adaptive methods are proposed, and the results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  2. C. F. Curtiss and J. O. Hirschfelder, “Integration of stiff equations,” Proc. Nat. Acad. Sci. USA 38, 235–243 (1952).

    Article  MathSciNet  Google Scholar 

  3. V. I. Lebedev, “How to solve stiff systems of differential equations by explicit methods,” Computational Processes and Systems (Nauka, Moscow, 1991), Vol. 8, pp. 237–291 [in Russian].

    Google Scholar 

  4. J. G. Verwer, “Explicit Runge–Kutta methods for parabolic partial differential equations,” Appl. Numer. Math. 22 (1–3), 359–379 (1996).

    Article  MathSciNet  Google Scholar 

  5. E. A. Novikov, Explicit Methods for Stiff Systems (Nauka, Novosibirsk, 1997) [in Russian].

    MATH  Google Scholar 

  6. L. M. Skvortsov, “Explicit stabilized Runge–Kutta methods,” Comput. Math. Math. Phys. 51 (7), 1153–1166 (2011).

    Article  MathSciNet  Google Scholar 

  7. L. M. Skvortsov, Numerical Solution of Ordinary Differential and Differential-Algebraic Equations (DMK, Moscow, 2018) [in Russian].

    Google Scholar 

  8. L. M. Skvortsov, “Explicit adaptive Runge–Kutta methods for stiff and oscillation problems,” Comput. Math. Math. Phys. 51 (8), 1339–1352 (2011).

    Article  MathSciNet  Google Scholar 

  9. L. M. Skvortsov, “Explicit adaptive Runge–Kutta methods,” Math. Models Comput. Simul. 4, 82–91 (2012).

    Article  MathSciNet  Google Scholar 

  10. M. E. Fowler and R. M. Warten, “A numerical integration technique for ordinary differential equations with widely separated eigenvalues,” IBM J. Res. Dev. 11 (5), 537–543 (1967).

    Article  MathSciNet  Google Scholar 

  11. J. D. Lambert, “Nonlinear methods for stiff systems of ordinary differential equations,” Lect. Notes Math. 363, 75–88 (1974).

    Article  MathSciNet  Google Scholar 

  12. A. Wambecq, “Rational Runge–Kutta methods for solving systems of ordinary differential equations,” Computing 20 (4), 333–342 (1978).

    Article  MathSciNet  Google Scholar 

  13. V. V. Bobkov, “New explicit A-stable methods for the numerical solution of differential equations,” Differ. Uravn. 14 (12), 2249–2251 (1978).

    MathSciNet  MATH  Google Scholar 

  14. A. N. Zavorin, “Application of nonlinear methods for computing transient processes in electric circuits,” Izv. Vyssh. Uchebn. Zaved. Radioelektron. 26 (3), 35–41 (1983).

    Google Scholar 

  15. L. M. Skvortsov, “Adaptive methods for numerical integration in problems of dynamical system simulation,” J. Comput. Syst. Sci. Int. 38 (4), 573–579 (1999).

    MATH  Google Scholar 

  16. L. M. Skvortsov, “Explicit adaptive methods for numerical solution of stiff systems,” Mat. Model. 12 (12), 97–107 (2000).

    MathSciNet  MATH  Google Scholar 

  17. L. M. Skvortsov, “Explicit multistep method for the numerical solution of stiff differential equations,” Comput. Math. Math. Phys. 47 (6), 915–923 (2007).

    Article  MathSciNet  Google Scholar 

  18. O. S. Kozlov, L. M. Skvortsov, and V. V. Khodakovskii, Solution of Differential and Differential-Algebraic Equations with the Help of MVTU Software Package (2005). http://model.exponenta.ru/mvtu/20051121.html.

  19. O. S. Kozlov and L. M. Skvortsov, “MVTU software package in scientific research and applied developments,” Math. Models Comput. Simul. 8 (4), 358–368 (2016).

    Article  MathSciNet  Google Scholar 

  20. B. A. Kartashov, E. A. Shabaev, O. S. Kozlov, and A. M. Shchekaturov, Dynamic Modeling Environment SimInTech for Technical Systems (DMK, Moscow, 2017) [in Russian].

    Google Scholar 

  21. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations (North-Holland, Amsterdam, 1984).

    MATH  Google Scholar 

  22. L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM J. Sci. Comput. 18 (1), 1–22 (1997).

    Article  MathSciNet  Google Scholar 

  23. P. Bogacki and L. F. Shampine, “A 3(2) pair of Runge–Kutta formulas,” Appl. Math. Lett. 2 (4), 321–325 (1989).

    Article  MathSciNet  Google Scholar 

  24. F. Mazzia and C. Magherini, Test Set for Initial Value Problem Solvers: Release 2.4 (Dep. Math. Univ. Bari, 2008). http://pitagora.dm.uniba.it/~testset/report/testset.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Skvortsov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsov, L.M. Construction and Analysis of Explicit Adaptive One-Step Methods for Solving Stiff Problems. Comput. Math. and Math. Phys. 60, 1078–1091 (2020). https://doi.org/10.1134/S0965542520070106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520070106

Keywords:

Navigation