Skip to main content
Log in

Simple Efficient Hybridization of Classic Global Optimization and Genetic Algorithms for Multiobjective Optimization

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An efficient method combining classical (gradient-based) methods for global scalar optimization and genetic algorithms for multiobjective optimization (MOO) is proposed for approximating the Pareto frontier and the Edgeworth–Pareto hull (EPH) of the feasible objective set in complicated nonlinear MOO problems involving piecewise constant functions of criteria with numerous local extrema. An optima injection method is proposed in which the global optima of individual criteria are added to the population of a genetic algorithm. It is experimentally shown that the method is significantly superior to the original genetic algorithm in the order of convergence and the approximation accuracy. Experiments concerning EPH approximation are also performed for the problem of constructing control rules for a cascade of reservoirs with criteria reflecting the reliability with which the requirements imposed on the cascade are met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Podinovski and V. D. Noghin, Pareto Optimal Solutions of Multicriteria Problems (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  2. P. S. Krasnoshchekov, V. V. Morozov, and N. M. Popov, Optimization in CAD (Maks, Moscow, 2008) [in Russian].

    Google Scholar 

  3. Yu. G. Evtushenko and M. A. Posypkin, “Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy,” Comput. Math. Math. Phys. 53 (2), 144–157 (2013).

    Article  MathSciNet  Google Scholar 

  4. A. V. Lotov and K. Miettinen, “Visualizing the Pareto frontier,” Multiobjective Optimization: Interactive and Evolutionary Approaches, Ed. by J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Lecture Notes in Computer Science (Springer, Berlin, 2008), Vol. 5252, pp. 213–244.

    Google Scholar 

  5. K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic, Boston, 1999).

    MATH  Google Scholar 

  6. A. V. Lotov and I. I. Pospelova, Multicriteria Decision Making Problems (Maks, Moscow, 2008) [in Russian].

    Google Scholar 

  7. Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization (Academic, Orlando, 1985).

    MATH  Google Scholar 

  8. A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  9. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    Book  Google Scholar 

  10. A. V. Lotov, G. K. Kamenev, and V. E. Berezkin, “Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems,” Dokl. Math. 66 (2), 260–262 (2002).

    MATH  Google Scholar 

  11. V. E. Berezkin, G. K. Kamenev, and A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier,” Comput. Math. Math. Phys. 46 (11), 1918–1931 (2006).

    Article  MathSciNet  Google Scholar 

  12. V. E. Berezkin and G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 52 (6), 846–854 (2012).

    Article  MathSciNet  Google Scholar 

  13. G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull,” Comput. Math. Math. Phys. 53 (4), 375–385 (2013).

    Article  MathSciNet  Google Scholar 

  14. V. E. Berezkin, A. V. Lotov, and E. A. Lotova, “Study of hybrid methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 54 (6), 919–930 (2014).

    Article  MathSciNet  Google Scholar 

  15. R. Horst and P. M. Pardalos, Handbook on Global Optimization (Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  16. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester, UK, 2001).

    MATH  Google Scholar 

  17. C. A. Coello, G. B. Lamont, and D. A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed. (Springer, Berlin, 2016).

    MATH  Google Scholar 

  18. J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, Ed. by J. J. Grefenstette (Lawrence Erlbaum, Hillsdale, NJ, USA 1985), pp. 93–100.

  19. K.-L. Du and M. N. S. Swamy, Search and Optimization by Metaheuristics (Springer, Berlin, 2016).

    Book  Google Scholar 

  20. A. V. Lotov and A. I. Ryabikov, “Multicriteria optimal feedback control and its application to the construction of control rules for a cascade of hydroelectric power stations,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 20 (4), 187–203 (2014).

    Google Scholar 

  21. A. V. Lotov, A. I. Ryabikov, and A. L. Buber, “Multicriteria decision making procedure with an inherited set of start points for local optimization of criteria scalarization,” Iskusstv. Intellekt Prinyatie Reshenii, No. 3, 58–68 (2018).

    Google Scholar 

  22. A. L. Buber, L. D. Ratkovich, and A. I. Ryabikov, “Simulation modeling of water economic systems in the optimization regime of control rules of management as applied to the unique Lake Baikal–Irkutsk Reservoir natural-technical complex,” Prirodoobustroistvo, No. 3, 31–39 (2018).

    Article  Google Scholar 

  23. A. I. Ryabikov, “Ersatz function method for minimizing a finite-valued function on a compact set,” Comput. Math. Math. Phys. 54 (2), 206–218 (2014).

    Article  MathSciNet  Google Scholar 

  24. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6 (2), 182–197 (2002).

    Article  Google Scholar 

  25. Yu. G. Evtushenko, Methods for Solving Extremal Problems and Their Application in Optimization Systems (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  26. V. E. Berezkin and A. V. Lotov, “Comparison of two Pareto frontier approximations,” Comput. Math. Math. Phys. 54 (9), 1402–1410 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 17-29-05108 ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lotov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotov, A.V., Ryabikov, A.I. Simple Efficient Hybridization of Classic Global Optimization and Genetic Algorithms for Multiobjective Optimization. Comput. Math. and Math. Phys. 59, 1613–1625 (2019). https://doi.org/10.1134/S0965542519100105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519100105

Keywords:

Navigation