Skip to main content
Log in

An Approximate Method for Determining the Harmonic Barycentric Coordinates for Arbitrary Polygons

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A relation for finding the harmonic barycentric coordinates for an arbitrary polygon is obtained. The solution is approximate analytical. In the proposed statement, the harmonic barycentric coordinates are determined in terms of the logarithmic potential of a double layer by solving the Dirichlet problem by the Fredholm method. The approximate nature of the solution is determined by the expansion of the kernel of the integral Fredholm equation of the second kind for the unknown density of potential on the boundary of the domain in the orthogonal Legendre polynomials and the expansion of Green’s function; these expansions are used for the calculation of the potential. An estimate of convergence rate and the error of the solution is obtained. The approximate solutions obtained by the proposed method are compared with the known exact solutions of some benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. S. Polyanskii, The Barycentric Method in Computational Electrodynamics (Akademiya FSO, Orel, 2017) [in Russian].

  2. I. S. Polyanskii, “The barycentric method in the problem of optimal control of the shape of the surface of a mirror antenna,” Mat. Model. 29 (11), 140–150 (2017).

    MathSciNet  Google Scholar 

  3. N. S. Arkhipov, I. S. Polyanskii, and D. E. Stepanov, “The barycentric method in the analysis of the field in a regular waveguide with an arbitrary cross section,” Antenny 212 (1), 32–40 (2015).

    Google Scholar 

  4. I. S. Polyanskii, “The vector barycentric method in computational electrodynamics,” Trudy St. Petersburg Inst. Informatiki Avtom., Ross. Akad. Nauk 51 (2), 206–222 (2017).

    Google Scholar 

  5. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984).

    MATH  Google Scholar 

  6. I. S. Polyanskii and Yu. S. Pekhov, “The barycentric method in the solution of singular integral equations of electrodynamics theory of reflector antennas,” Trudy St. Petersburg Inst. Informatiki Avtom., Ross. Akad.Nauk, 54 (5), 244–262 (2017).

    Google Scholar 

  7. A. S. Il’inskii and Yu. G. Smirnov, Diffraction of Electromagnetic Waves by Thin Conductive Screens: Pseudodifferential Operators in Diffraction Problems (IPRZhR, Moscow, 1996) [in Russian].

  8. E. L. Wachspress, A Rational Finite Element Basis (Academic, New York, 1975).

    MATH  Google Scholar 

  9. I. S. Polyanskii, “Poisson’s barycentric coordinates for the multidimensional approximation of the scalar potential in an arbitrary domain (Part 1),” Vestn. Saratov Gos. Tekh. Univ. 78 (1), 30–36 (2015).

  10. I. S. Polyanskii, “Poisson’s barycentric coordinates for the multidimensional approximation of the scalar potential in an arbitrary domain (Part 2),” Vestn. Saratov Gos. Tekh. Univ. 78 (1), 36–42 (2015).

  11. I. S. Polyanskii, “Poisson’s barycentric coordinates,” Trudy St. Petersburg Inst. Informatiki Avtom., Ross. Akad. Nauk 49 (6), 32–48 (2016).

    Google Scholar 

  12. V. M. Radygin and I. S. Polyanskii, “A modified method of sequential conformal mappings of preassigned polygonal domains,” Vestn. Tomsk Gos. Univ., Ser. Mat. Mekh. 39 (1), 25–35 (2016).

    Google Scholar 

  13. V. M. Radygin and I. S. Polyanskii, “Methods of conformal mappings of polyhedra in \({{\mathbb{R}}^{3}}\),” Vestn. Udmurt. Gos. Univ., Ser. Mat. Mekh. Komput. Nauki 27 (1), 60–68 (2017).

    MathSciNet  MATH  Google Scholar 

  14. F. G. Tricomi, Integral Equations (Interscience, New York, 1957).

    MATH  Google Scholar 

  15. R. M. Rustamov, “Boundary element formulation of harmonic coordinates,” Techn. Rep. of Department of Mathematics, Purdue University, 2007.

  16. V. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Programs. Handbook (Naukova Dumka, Kiev, 1986) [in Russian].

  17. I. O. Arushanyan, “On the numerical solution of boundary integral equations of the second kind in domains with corner points,” Zh. Vychisl. Mat. Mat. Fiz. 36, 537–548 (1996).

    MathSciNet  MATH  Google Scholar 

  18. G. Szegö, Orthogonal Polynomials (American Mathematical Society, New York, 1959).

    MATH  Google Scholar 

  19. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1965; Academic, San Diego, 1980).

  20. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    MATH  Google Scholar 

  21. N. N. Vorob’ev, The Theory of Series, 4th ed. (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. I. O. Arushanyan, “A family of quadrature formulas for solving boundary integral equations,” Vych. Met. Program. 14 (4), 461–467 (2013).

    Google Scholar 

  23. M. L. Krasnov, Integral Equations (Introduction to the Theory) (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  24. V. G. Maz’ya, “Boundary integral equations,” Itogi Nauki Tekh. (VINITI, Moscow, 1988), Vol. 27, pp. 131–228.

    Google Scholar 

  25. A. V. Ozhegova, “Convergence of the general projection method for solving the singular integral equation of the first kind with a Cauchy kernel in the integral metric,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 10, 39–47 (2008).

  26. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge Univ. Press, Cambridge, 1931).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Il’inskii or I. S. Polyanskii.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inskii, A.S., Polyanskii, I.S. An Approximate Method for Determining the Harmonic Barycentric Coordinates for Arbitrary Polygons. Comput. Math. and Math. Phys. 59, 366–383 (2019). https://doi.org/10.1134/S0965542519030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519030096

Keywords:

Navigation