Skip to main content
Log in

Numerical Solution of Time-Dependent Problems with Different Time Scales

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Problems for time-dependent equations in which processes are characterized by different time scales are studied. Parts of the equations describing fast and slow processes are distinguished. The basic features of such problems related to their approximation are taken into account using finer time grids for fast processes. The construction and analysis of inhomogeneous time approximations is based on the theory of additive operator–difference schemes (splitting schemes). To solve time-dependent problems with different time scales, componentwise splitting schemes and vector additive schemes are used. The capabilities of the proposed schemes are illustrated by numerical examples for the time-dependent convection–diffusion problem. If convection is dominant, the convective transfer is computed on a finer time grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. A. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization (Springer, New York, 2008).

    MATH  Google Scholar 

  2. M. O. Steinhauser, Computational Multiscale Modeling of Fluids and Solids: Theory and Applications, 2nd ed. (Springer, Berlin, 2017).

    Book  MATH  Google Scholar 

  3. E. Weinan, Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011).

    MATH  Google Scholar 

  4. Ch. Kuehn, Multiple Time Scale Dynamics (Springer, Cham, 2015).

    Book  MATH  Google Scholar 

  5. H.-O. Kreiss, “Problems with different time scales,” Acta Numerica 1, 101–139 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Engquist and Y.-H. Tsai, “Heterogeneous multiscale methods for stiff ordinary differential equations,” Math. Comput. 74 (252), 1707–1742 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Abdulle, E. Weinan, B. Engquist, and E. Vanden-Eijnden, “The heterogeneous multiscale method,” Acta Numerica 21, 1–87 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Geiser, “Recent advances in splitting methods for multiphysics and multiscale: Theory and applications,” J. Alg. Comput. Technol. 9 (1), 65–93 (2015).

    MathSciNet  Google Scholar 

  9. J. Geiser, Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering (Springer, Cham, 2016).

    Book  MATH  Google Scholar 

  10. G. I. Marchuk, “Splitting and alternating direction methods,” in Handbook of Numerical Analysis, Ed. by P. G. Ciarlet and J.-L. Lions (North-Holland, 1990), Vol. I, pp. 197–462.

    Google Scholar 

  11. P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (de Gruyter, Berlin, 2014).

  12. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  13. L. Angermann and P. Knabner, Numerical Methods for Elliptic and Parabolic Partial Differential Equations (Springer, New York, 2003).

    MATH  Google Scholar 

  14. C. Grossmann, H. G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  15. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 2006).

    MATH  Google Scholar 

  16. A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich, Difference Schemes with Operator Factors (Kluwer, Berlin, 2002).

    Book  MATH  Google Scholar 

  17. V. N. Abrashin, “A version of the alternate direction method for solving multidimensional problems of mathematical physics,” Differ. Uravn. 26, 314–323 (1990).

    Google Scholar 

  18. P. N. Vabishchevich, “Vector additive difference schemes for evolutionary first-order equations,” Zh. Vychisl. Mat. Mat. Fiz. 36 (3), 44–51 (1996).

    Google Scholar 

  19. A. A. Samarskii, P. N. Vabishchevich, and P. P. Matus, “Stability of Vector Additive Schemes,” Doklady Math. 58, 133–135 (1998).

    Google Scholar 

  20. K. W. Morton and R. B. Kellogg, Numerical Solution of Convection–Diffusion Problems (Chapman & Hall, London, 1996).

    Google Scholar 

  21. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Convection–Diffusion Problems (URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  22. A. Logg, K. A. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (Springer, 2012).

    Book  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Government of the Russian Federation, project no. 14.Y26.31.0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vabishchevich.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vabishchevich, P.N., Zakharov, P.E. Numerical Solution of Time-Dependent Problems with Different Time Scales. Comput. Math. and Math. Phys. 58, 1552–1561 (2018). https://doi.org/10.1134/S0965542518100123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518100123

Keywords:

Navigation