Skip to main content
Log in

Numerical Methods for Computing Plausibility and Belief Distributions of Consequences of a Subjective Model of Object of Research

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Numerical methods for computing plausibility and belief distributions of consequences of a subjective model are considered. More precisely, related constrained optimization problems are studied. Error estimates of the proposed algorithms are obtained. Techniques for taking into account the information about the consequence available to the researcher for improving the accuracy of computations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Pyt’ev, “Modeling of subjective judgments made by a researcher-modeler about the model of the research object,” Math. Models Comput. Simul. 5, 538–557 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. N. Kalitkin, Numerical Methods, Ed. by A. A. Samarskii, 2nd ed. (BKhV, St. Peterburg, 2011) [in Russian].

  3. L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: A review of algorithms and comparison of software implementations,” J. Global Optim. 56, 1247–1293 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. R. Conn, K. Scheinberg, and L. N. Vincente, Introduction to Derivative-Free Optimization. MPS-SIAM Book Series on Optimization (SIAM, Philadelphia, 2009).

    Book  Google Scholar 

  5. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Global Optim. 13, 455–492 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the loop: A review of bayesian optimization,” Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

  7. J. M. Hernandez-Lobato, M. A. Gelbart, M. W. Hoffman, R. P. Adams, and Z. Ghahramani, “Predictive entropy search for bayesian optimization with unknown constraints,” in Proc. 32nd Int. Conf. on Machine Learning, Lille, France, 2015, Vol. 37 of JMLR: W&CP. arXiv:1502.05312 stat.ML

    Google Scholar 

  8. V. Picheny, “A stepwise uncertainty reduction approach to constrained global optimization,” in Proc. 17th Int. Conf. on Artificial Intelligence and Statistics, Vol. 33 of JMLR: W&CP, 2014.

    Google Scholar 

  9. J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, J. P. Cunningham, “Bayesian optimization with inequality constraints,” in Proc. 31st Int. Conf. on Machine Learning, Beijing, 2014, Vol. 32 of JMLR: W&CP.

    Google Scholar 

  10. R. B. Gramacy, G. A. Gray, S. Le Dirigabel, H. K. H. Lee, P. Ranjan, G. Wells, and S. M. Wild, “Modeling an augmented Lagrangian for blackbox constrained optimization,” Technometrics 58, 1–11 (2016).

    Article  MathSciNet  Google Scholar 

  11. V. Picheny, R. B. Gramacy, S. M. Wild, and S. Le Dirigabel, “Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian.” arXiv:1605.09466 [stat.CO]. Cited October, 2016.

    Google Scholar 

  12. F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].

    Google Scholar 

  13. U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. Software, Environments and Tools (SIAM, Philadelphia, 2012).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balakin.

Additional information

Original Russian Text © D.A. Balakin, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 5, pp. 821–823.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakin, D.A. Numerical Methods for Computing Plausibility and Belief Distributions of Consequences of a Subjective Model of Object of Research. Comput. Math. and Math. Phys. 58, 790–802 (2018). https://doi.org/10.1134/S0965542518050032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518050032

Keywords

Navigation