Skip to main content
Log in

Nonclassical Transonic Boundary Layers: Toward Overcoming Dead-End Situations in High-Speed Aerodynamics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Analytical models of unsteady free viscous-inviscid interaction of gas flows at transonic speeds, i.e., a transonic boundary layer with self-induced pressure (nonclassical boundary layer) are considered. It is shown that an adequate flow model can be constructed by applying methods of singular perturbations. The results of a comparative analysis of classical and regularized stability models for a boundary layer with self-induced pressure in the case of interaction at transonic speeds are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung,” Verh. Int. Math. Kongr. Heidelberg (1904).

    Google Scholar 

  2. V. Ya. Neiland, “Supersonic viscous gas flow near the separation point,” Abstract of Papers of the 3rd All-Union Conference on theoretical and Applied Mechanics, January 25–February 1, 1968 (Nauka, Moscow, 1968), p. 224.

    Google Scholar 

  3. K. Stewartson and P. G. Williams, “Self-induced separation,” Proc. R. Soc. London, Ser. A 312 (1509), 181–206 (1969).

    Article  MATH  Google Scholar 

  4. O. S. Ryzhov, “Unsteady boundary layer with self-induced pressure in transonic flow,” Dokl. Akad. Nauk SSSR 236 (5), 1091–1094 (1977).

    MathSciNet  Google Scholar 

  5. O. S. Ryzhov and I. V. Savenkov, “Stability of a boundary layer with transonic external-flow velocities,” J. Appl. Mech. Tech. Phys. 31 (2), 222–227 (1990).

    Article  Google Scholar 

  6. V. I. Zhuk, Tollmien–Schlichting Waves and Solitons (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  7. A. N. Bogdanov, “Higher approximations of the transonic expansion in problems of unsteady transonic flow,” J. Appl. Math. Mech. 61 (5), 775–786 (1997).

    Article  MathSciNet  Google Scholar 

  8. A. N. Bogdanov, “Modeling the transient regime of a transonic nozzle,” Mat. Model. 7 (9), 117–126 (1995).

    MathSciNet  MATH  Google Scholar 

  9. A. N. Bogdanov and V. N. Diesperov, “The simulation of unsteady transonic flow and the stability of a transonic boundary layer,” J. Appl. Math. Mech. 69 (3), 358–365 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. C. Lin, E. Reissner, and H. S. Tsien, “On two-dimensional non-steady motion of a slender body in a compressible fluid,” J. Math. Phys. 27 (3), 220–231 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. N. Bogdanov, V. N. Diesperov, and V. I. Zhuk, “Asymptotics of the lower branch of the neutral stability curve for the transonic interacting boundary layer on a flat plate,” Dokl. Phys. 58 (3), 104–106 (2013).

    Article  Google Scholar 

  12. S. A. Gaponov and A. A. Maslov, Development of Perturbations in Compressible Flows (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  13. A. N. Bogdanov, V. N. Diesperov, and V. I. Zhuk, “Special points of the field of dispersion curves when investigating the stability of the transonic boundary layer,” Dokl. Phys. 58 (4), 141–142 (2013).

    Article  Google Scholar 

  14. A. N. Bogdanov and V. N. Diesperov, “Tollmien–Schlichting waves in a transonic boundary layer: Excitation from the outer flow and from the surface,” J. Appl. Math. Mech. 71 (2), 258–268 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. D. Terent’ev, Doctoral Dissertation in Mathematics and Physics (Computing Center, Russian Academy of Sciences, Moscow, 1986).

    Google Scholar 

  16. J. D. Cole and L. P. Cook, Transonic Aerodynamics (North-Holland, Amsterdam, 1986).

    MATH  Google Scholar 

  17. V. Ya. Neiland, “Asymptotic problems in the theory of supersonic viscous flows,” in Proceedings of Central Institute of Aerohydrodynamics (Moscow, 1974), No. 1529 [in Russian].

    Google Scholar 

  18. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  19. O. S. Ryzhov and E. D. Terent’ev, “On the transition mode characterizing the triggering of a vibrator in the subsonic boundary layer on a plate,” J. Appl. Math. Mech. 50 (6), 753–762 (1986).

    Article  MATH  Google Scholar 

  20. A. V. Chernyshev, Candidate’s Dissertation in Mathematics and Physics (Computing Center, Russian Academy of Sciences, Moscow, 2010).

    Google Scholar 

  21. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, 1972).

    MATH  Google Scholar 

  22. S. N. Timoshin, “Asymptotic form of the lower branch of the neutral curve in transonic boundary layer,” Uch. Zap. TsAGI 21 (6), 50–57 (1990).

    Google Scholar 

  23. V. V. Mikhailov, “Asymptotic behavior of the neutral curves of the linear stability problem for a laminar boundary layer,” Fluid Dyn. 16 (5), 669–674 (1981).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bogdanov.

Additional information

Dedicated to the 100th birthday of Academician N.N. Moiseev

Original Russian Text © A.N. Bogdanov, V.N. Diesperov, V.I. Zhuk, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 2, pp. 270–280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, A.N., Diesperov, V.N. & Zhuk, V.I. Nonclassical Transonic Boundary Layers: Toward Overcoming Dead-End Situations in High-Speed Aerodynamics. Comput. Math. and Math. Phys. 58, 254–263 (2018). https://doi.org/10.1134/S0965542518020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518020033

Keywords

Navigation