Skip to main content
Log in

The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the diffusion equation as an example, results of applying the projection Galerkin method for solving time-independent heat and mass transfer equations in a semi-infinite domain are presented. The convergence of the residual corresponding to the approximate solution of the timeindependent diffusion equation obtained by the projection method using the modified Laguerre functions is proved. Computational results for a two-dimensional toy problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Seregina, M. A. Stepovich, and A. M. Makarenkov, “On a modified projection scheme of the least squares method for the modeling of the distribution of minority charge carriers generated by an electron beam in a homogeneous semiconductor,” J. Surface Invest. X-ray, Synchrotron Neutron Techn. 7, 1077–1080 (2013).

    Article  Google Scholar 

  2. E. V. Seregina, M. A. Stepovich, and A. M. Makarenkov, “A modified projection scheme of the least squares method for simulating the concentration of minority charge carriers semiconductors,” Usp. Prikl. Fiz. 1, 354–358 (2013).

    Google Scholar 

  3. D. F. Kyser and D. B. Wittry, “Spatial distribution of excess carriers in electron-beam excited semiconductors,” Proc. IEEE 55, 733–734 (1967).

    Article  Google Scholar 

  4. K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D: Appl. Phys. 5, 43–58 (1972).

    Article  Google Scholar 

  5. N. N. Mikheev, I. M. Nikonorov, V. I. Petrov, and M. A. Stepovich, “Deterimination of the electrophysical parameters of semiconductors in a scanning electron microscope using the induced current and cathodoluminescence methods,” Bull. Acad. Sci. USSR: Phys. 54 (2), 82–88 (1990).

    Google Scholar 

  6. N. N. Mikheev, V. I. Petrov, and M. A. Stepovich, “Quantitativa analysis of semiconductor optoelectronic materials by raster electron microscopy,” Bull. Acad. Sci. USSR: Phys. 55 (8), 1–9 (1991).

    Google Scholar 

  7. N. N. Mikheev and M. A. Stepovich, “Distribution of energy losses in interaction of an electron probe with material,” Industr. Lab. 62, 221–226 (1996).

    Google Scholar 

  8. A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, “Experimental cathodoluminescence studies of exciton transport in Gallium Nitride,” Bull. Russ. Acad. Sci.: Phys. 76, 970–973 (2012).

    Article  Google Scholar 

  9. A. N. Polyakov, M. A. Stepovich, and D. V. Turtin, “Three-dimensional diffusion of excitons generated by an electron meam in a semiconductor material: Results of mathmatical modeling,” J. Surface Invest. X-ray, Synchrotron Neutron Techn. 9, 1251–1255 (2015).

    Article  Google Scholar 

  10. S. V. Lapin and N. D. Egupov, The Theory of Matrix Operators and Its Aplication to Automatic Control Problems (MGTU im. N.E. Baumana, Moscow, 1997) [in Russian].

    Google Scholar 

  11. P. K. Suetin, Classical Orthogonal Polynomials (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  12. V. I. Petrov, A. A. Samokhvalov, M. A. Stepovich, et al., “A matrix method for solving the problem of cooperative motion of minority charge carriers generated in a semiconductor by an electron beam,” Izv. Ross. Akad. Nauk, Ser. Fiz. 66, 1310–1316 (2002).

    Google Scholar 

  13. A. A. Belov, N. D. Egupov, A. A. Samokhvalov, M. A. Stepovich, and M. M. Tchaikovsky, “Orthogonal-projection method for solving equations of diffusion of minority charge carriers generated by the electron beam in semiconductors,” Proc. SPIE 5025, 149–159 (2003).

    Article  Google Scholar 

  14. V. A. Abilov, M. V. Abilov, and M. K. Kerimov, “Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials,” Comput. Math. Math. Phys. 55, 1094–1102 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  16. V. K. Lashchenov, “Approximation of differentiable functions by partial sums of the Fourier–Laguerre series,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 1(224), 44–57 (1981).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Makarenkov.

Additional information

Original Russian Text © A.M. Makarenkov, E.V. Seregina, M.A. Stepovich, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 5, pp. 801–813.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarenkov, A.M., Seregina, E.V. & Stepovich, M.A. The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain. Comput. Math. and Math. Phys. 57, 802–814 (2017). https://doi.org/10.1134/S0965542517050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517050074

Keywords

Navigation