Skip to main content
Log in

OpenMP + MPI parallel implementation of a numerical method for solving a kinetic equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A two-level OpenMP + MPI parallel implementation is used to numerically solve a model kinetic equation for problems with complex three-dimensional geometry. The scalability and robustness of the method are demonstrated by computing the classical gas flow through a circular pipe of finite length and the flow past a reentry vehicle model. It is shown that the two-level model significantly speeds up the computations and improves the scalability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Titarev, “Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes,” Comput. Math. Math. Phys. 50 (10), 1719–1733 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. A. Titarev, “Efficient deterministic modeling of three-dimensional rarefied gas flows,” Commun. Comput. Phys. 12 (1), 161–192 (2012).

    Article  MathSciNet  Google Scholar 

  3. M. Dumbser, B. A. Titarev, and S. V. Utyuzhnikov, “Implicit multiblock method for solving a kinetic equation on unstructured meshes,” Comput. Math. Math. Phys. 53 (5), 601–615 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. A. Titarev, M. Dumbser, and S. V. Utyuzhnikov, “Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions,” J. Comput. Phys. 256, 17–33 (2014).

    Article  MathSciNet  Google Scholar 

  5. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel software package NOISETTE for large-scale computation of aerodynamic and aeroacoustic applications,” Vychisl. Metody Program. 13 (3), 110–125 (2012).

    Google Scholar 

  6. A. V. Gorobets, “Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms,” Comput. Math. Math. Phys. 55 (4), 638–649 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. M. Shakhov, “Generalization of the Krook relaxation kinetic equation,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 142–145 (1968).

    Google Scholar 

  8. V. A. Titarev, “Software package Nesvetai-3D for modeling three-dimensional rarefied monatomic gas flows,” Nauka Obrazovanie Mosk. Gos. Tekh. Univ. im. N.E. Baumana. Elektron. Zh., No. 6, 124–154 (2014).

    Google Scholar 

  9. V. A. Titarev, “Conservative numerical methods for model kinetic equations,” Comput. Fluids 36 (9), 1446–1459 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Mieussens, “Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries,” J. Comput. Phys. 162 (2), 429–466 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. V. Gusarov and I. Smurov, “Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer,” Phys. Fluids 14 (12), 4242–4255 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. S. Men’shov and Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium,” A Collection of Technical Papers of the 6th International Symposium on CFD (Lake Tahoe, Nevada, 1995), Vol. 2, p. 815.

    Google Scholar 

  13. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, 2nd ed. (MIT Press, Cambridge, Mass., 1999).

    MATH  Google Scholar 

  14. M. Dumbser, M. Käser, V. A. Titarev, and E. F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems,” J. Comput. Phys. 226, 204–243 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement,” J. Comput. Phys. 223, 589–608 (2007).

    Article  MATH  Google Scholar 

  16. M. J. Chorley and D. W. Walker, “Performance analysis of a hybrid MPI/OpenMP application on multi-core clusters,” J. Comput. Sci. 47, 168–174 (2010).

    Article  Google Scholar 

  17. A. V. Gorobets, A. O. Zheleznyakov, S. A. Sukov, P. B. Bogdanov, and B. N. Chetverushkin, “Extension of twolevel parallelization of MPI + OpenMP by applying OpenCL for gas dynamic computations on heterogeneous systems,” Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., No. 9, 76–86 (2011).

    Google Scholar 

  18. F. Sharipov, “Benchmark problems in rarefied gas dynamics,” Vacuum Special Issue Vacuum Gas Dynamics: Theory, Experiments and Practical Applications 86 (11), 1697–1700 (2012).

    Google Scholar 

  19. G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular graphs,” J. Parallel Distribut. Comput. 48, 96–129 (1998).

    Article  MATH  Google Scholar 

  20. I. E. Kaporin and O. Yu. Milyukova, “Massively parallel preconditioned conjugate gradient algorithm for the numerical solution of systems of linear algebraic equations,” Collected Papers of the Department of Applied Optimization Problems of the RAS Computing Center, Ed. by V. G. Zhadan (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2011), pp. 132–157 [in Russian].

    Google Scholar 

  21. A. V. Vaganov, S. M. Drozdov, A. P. Kosykh, G. G. Nersesov, I. F. Chelysheva, and V. L. Yumashev, “Numerical modeling of the aerodynamics of a winged reentry vehicle,” Uch. Zap. TsAGI 40 (2), 3–15 (2009).

    Google Scholar 

  22. R. R. Arslanbekov, V. I. Kolobov, and A. A. Frolova, “Kinetic solvers with adaptive mesh in phase space,” Phys. Rev. E 88, 063301 (2013).

    Article  Google Scholar 

  23. C. Baranger, J. Claudel, N. Herouard, and L. Mieussens, “Locally refined discrete velocity grids for stationary rarefied flow simulations,” J. Comput. Phys. 257, 572–593 (2014).

    Article  MathSciNet  Google Scholar 

  24. V. A. Garanzha, L. N. Kudryavtseva, and S. V. Utyuzhnikov, “Variational method for untangling and optimization of spatial meshes,” J. Comput. Appl. Math. 269, 24–41 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Titarev.

Additional information

Original Russian Text © V.A. Titarev, S.V. Utyuzhnikov, A.V. Chikitkin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 11, pp. 1949–1959.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titarev, V.A., Utyuzhnikov, S.V. & Chikitkin, A.V. OpenMP + MPI parallel implementation of a numerical method for solving a kinetic equation. Comput. Math. and Math. Phys. 56, 1919–1928 (2016). https://doi.org/10.1134/S0965542516110129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516110129

Keywords

Navigation