Skip to main content
Log in

Nonlocal unique solvability of a steady-state problem of complex heat transfer

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A boundary value problem of radiative–conductive–convective heat transfer in a threedimensional domain is proved to be uniquely solvable. An iterative algorithm is proposed for finding its solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Modest, Radiative Heat Transfer (Academic, New York, 2003).

    MATH  Google Scholar 

  2. A. E. Kovtanyuk and A. Yu. Chebotarev, “Steady-state problem of complex heat transfer,” Comput. Math. Math. Phys. 54 (4), 719–726 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Andre and A. Degiovanni, “A new way of solving transient radiative-conductive heat transfer problems,” J. Heat Transfer 120 (4), 943–955 (1998).

    Article  Google Scholar 

  4. J. M. Banoczi and C. T. Kelley, “A fast multilevel algorithm for the solution of nonlinear systems of conductiveradiative heat transfer equations,” SIAM J. Sci. Comput. 19 (1), 266–279 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Thömmes, R. Pinnau, M. Seaïd, T. Götz, and A. Klar, “Numerical methods and optimal control for glass cooling processes,” Trans. Theory Stat. Phys. 31 (4–6), 513–529 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Pinnau and M. Seaïd, “Simplified PN models and natural convection–radiation,” Math. Ind. 12, 397–401 (2008).

    Article  MATH  Google Scholar 

  7. A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann, “Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method,” Int. J. Heat Mass Transfer 55, 649–654 (2012).

    Article  MATH  Google Scholar 

  8. A. E. Kovtanyuk, “Algorithms for parallel computing radiative-conductive heat transfer,” Komp’yut. Issled. Model. 4 (3), 543–552 (2012).

    Google Scholar 

  9. A. E. Kovtanyuk and A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem,” Appl. Math. Comput. 219, 9356–9362 (2013).

    MathSciNet  MATH  Google Scholar 

  10. A. A. Amosov, “Global solvability of a nonlinear nonstationary problem with a nonlocal boundary condition of radiative heat transfer type,” Differ. Equations 41 (1), 96–109 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by the SP1-system,” Commun. Math. Sci. 5 (4), 951–969 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions,” Nonlinear Anal. Real World Appl. 10 (5), 2914–2936 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Ducomet and S. Necasova, “Global weak solutions to the 1D compressible Navier–Stokes equations with radiation,” Commun. Math. Anal. 8 (3), 23–65 (2010).

    MathSciNet  MATH  Google Scholar 

  14. O. Tse, R. Pinnau, and N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy,” Math. Models Methods Appl. Sci. 22 (9), 1–29 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. C. T. Kelley, “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations,” Transport Theory Statist. Phys. 25 (2), 249–260 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem,” Appl. Math. Comput. 249, 247–252 (2014).

    MathSciNet  Google Scholar 

  17. A. A. Amosov, “On the solvability of a radiative heat exchange problem,” Dokl. Akad. Nauk SSSR 245 (6), 1341–1344 (1979).

    MathSciNet  Google Scholar 

  18. A. A. Amosov, “On the limit relation between two radiative heat exchange problems,” Dokl. Akad. Nauk SSSR 246 (5), 1080–1983 (1979).

    MathSciNet  Google Scholar 

  19. M. T. Laitinen and T. Tiihonen, “Heat Transfer in conducting, radiating and semitransparent materials,” Math. Methods Appl. Sci. 21, 375–392 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Laitinen, “Asymptotic analysis of conductive-radiative heat transfer,” Asymptotic Anal. 29 (3–4), 323–342 (2002).

    MathSciNet  MATH  Google Scholar 

  21. A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency,” J. Math. Sci. 164 (3), 309–344 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem,” J. Math. Anal. Appl. 409, 808–815 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. E. Kovtanyuk and A. Yu. Chebotarev, “Stationary free convection problem with radiative heat exchange,” Differ. Equations 50 (12), 1592–1599 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer,” J. Math. Anal. Appl. 412, 520–528 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Kufner and S. Fucik, Nonlinear Differential Equations (Elsevier, Amsterdam 1980; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  26. V. G. Maz’ya, “The coercivity of the Dirichlet problem in a domain with irregular boundary,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 64–76 (1973).

    MathSciNet  Google Scholar 

  27. L. Hörmander, Linear Partial Differential Operators (Mir, Moscow, 1965; Springer-Verlag, Berlin, 1969).

    MATH  Google Scholar 

  28. A. V. Fursikov and O. Yu. Emanuilov, “Local exact controllability of the Boussinesq equations,” Vestn. Ross. Univ. Druzhby Narodov Ser. Mat., No. 1, 177–194 (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Kovtanyuk or A. Yu. Chebotarev.

Additional information

Original Russian Text © A.E. Kovtanyuk, A.Yu. Chebotarev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 816–823.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovtanyuk, A.E., Chebotarev, A.Y. Nonlocal unique solvability of a steady-state problem of complex heat transfer. Comput. Math. and Math. Phys. 56, 802–809 (2016). https://doi.org/10.1134/S0965542516050110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516050110

Keywords

Navigation