Skip to main content
Log in

Iterative methods of stochastic approximation for solving non-regular nonlinear operator equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Iterative methods for solving non-regular nonlinear operator equations in a Hilbert space under random noise are constructed and examined. The methods use the averaging of the input data. It is not assumed that the noise dispersion is known. An iteratively regularized method of order zero for equations with monotone operators and iteratively regularized methods of the Gauss–Newton type for equations with arbitrary smooth operators are used as the basic procedures. It is shown that the generated approximations converge in the mean-square sense to the desired solution or stabilize (again in the mean-square sense) in a small neighborhood of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Wasan, Stochastic Approximation (Cambridge Univ. Press, Cambridge, 1969; Mir, Moscow, 1972).

    MATH  Google Scholar 

  2. M. V. Nevel’son and R. Z. Has’minskii, Stochastic Approximation and Recursive Estimation (Nauka, Moscow, 1972; Am. Math. Soc., Providence, R.I., 1973).

    MATH  Google Scholar 

  3. H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and Applications (Springer, New York, 2003).

    MATH  Google Scholar 

  4. G. I. Salov, “On a stochastic approximation theorem in a Hilbert space and its applications,” Theor. Probab. Appl.24(2), 413–419 (1979).

    Article  MathSciNet  Google Scholar 

  5. A. B. Bakushinskii and M. Yu. Kokurin, Iterative Methods for Solving Ill-Posed Operator Equations with Smooth Operators (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  6. A. M. Fedotov, Ill-Posed Problems with Random Errors in Data (Nauka, Novosibirsk, 1990) [in Russian].

    MATH  Google Scholar 

  7. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer, New York, 2005).

    MATH  Google Scholar 

  8. F. Bauer, T. Hohage, and A. Munk, “Iteratively regularized Gauss–Newton method for nonlinear inverse problems with random noise,” SIAM J. Numer. Anal.47(3), 1827–1846 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  9. Ya. Z. Tsypkin, Fundamentals of the Theory of Learning Systems (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  10. A. B. Bakushinskii and A. V. Goncharskii, Iterative Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  11. A. B. Bakushinskii, “On the construction of a regularizing algorithm with random disturbances,” Dokl. Akad. Nauk SSSR189(2), 231–233 (1969).

    MathSciNet  Google Scholar 

  12. A. B. Bakushinskii and A. S. Apartsyn, “Methods of stochastic approximation type for solving linear ill-posed problems,” Sib. Mat. Zh.16(1), 12–18 (1975).

    Article  Google Scholar 

  13. R. E. Bruck, “On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space,” J. Math. Anal. Appl.61(1), 159–164 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. S. Nemirovsky and D. B. Yudin, Problem Complexity and Method Efficiency in Optimization (Nauka, Moscow, 1979; Wiley-Interscience, New York, 1983).

    MATH  Google Scholar 

  15. B. T. Polyak, “A new method of stochastic approximation type,” Autom. Remote Control51(7), 937–946 (1990).

    MATH  MathSciNet  Google Scholar 

  16. R. Schwabe, “On Bather’s stochastic approximation algorithm,” Kybernetika30(3), 301–306 (1994).

    MATH  MathSciNet  Google Scholar 

  17. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces (Nauka, Moscow, 1985; Reidel, Dordrecht, 1987).

    Book  MATH  Google Scholar 

  18. J.-P. Kahane, Some Random Series of Functions (Cambridge Univ. Press, Cambridge, 1968; Mir, Moscow, 1973).

    MATH  Google Scholar 

  19. M. Yu. Kokurin, Operator Regularization and Study of Nonlinear Monotone Problems (Mar. Gos. Univ., YoshkarOla, 1998).

    Google Scholar 

  20. S. Gan and D. Qui, “On the Hajek–Renyi inequality,” Wuhan Univ. J. Nat. Sci.12(6), 971–974 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Miao, “Hajek–Renyi inequality for dependent random variables in Hilbert space and applications,” Rev. Un. Mat. Argentina53(1), 101–112 (2012).

    MATH  MathSciNet  Google Scholar 

  22. V. V. Petrov, Limit Theorems for Sums of Independent Random Variables (Nauka, Moscow, 1987; Clarendon, Oxford, 1995).

    Google Scholar 

  23. A. B. Bakushinskii, M. Yu. Kokurin, and A. I. Kozlov, Stabilizing Gradient-Type Methods for Solving Irregular Nonlinear Operator Equations (LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  24. A. B. Bakushinskii and M. Yu. Kokurin, Iterative Methods for Solving Irregular Equations (LENAND, Moscow, 2006) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Bakushinskii.

Additional information

Original Russian Text © A.B. Bakushinskii, M.Yu. Kokurin, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 10, pp. 1637–1645.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakushinskii, A.B., Kokurin, M.Y. Iterative methods of stochastic approximation for solving non-regular nonlinear operator equations. Comput. Math. and Math. Phys. 55, 1597–1605 (2015). https://doi.org/10.1134/S096554251510005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251510005X

Keywords

Navigation