Skip to main content
Log in

Rheology model for turbulent suspension flow through a horizontal channel

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A model was developed for solids-liquid flow with any solids concentrations. The model includes the two-phase flow equations for the entire flow. It includes also the rheology law and the particle transfer equation with account for interphase slipping. The statistical model of turbulence accounts for the turbulence modulation by particles. The model was tested on a problem about a steady state flow with suspended heavy particles in a horizontal pipe. Comparison with experimental data and other accurate simulations demonstrated that this new model is useful for predicting the features of turbulent suspension flows. The secondary flows in a pipe show three-layered structure of the two-phase flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Prosperetti, Life and death by boundary conditions, J. Fluid Mech., 2015, Vol. 768, P. 1–4.

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Fox, On multiphase turbulence models for collisional fluid-particle flows, J. Fluid Mech., 2014, Vol. 742, P. 368–124.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. F. Boyer, E. Guazzelli, and O. Pouliquen, Unifying suspension and granular rheology, Phys. Rev. Lett., 2011, Vol. 107, No. 18, P. 188301–1–188301–5.

    Article  ADS  Google Scholar 

  4. M. Houssais and D.J. Jerolmack, Toward a unifying constitutive relation for sediment transport across environments, Geomorphology, 2017, Vol. 277, P. 251–264.

    Article  ADS  Google Scholar 

  5. T. Revil-Baudard and J. Chauchat, A two-phase model for sheet flow regime based on dense granular flow rheology, J. Geophys. Res., 2013, Vol. 118, No. 2, P. 619–634.

    Article  ADS  Google Scholar 

  6. F. Chiodi, P. Claudin, and B. Andreotti, A two-phase flow model of sediment transport: transition from bedload to suspended load, J. Fluid Mech., 2014, Vol. 755, P. 561–581.

    Article  ADS  MathSciNet  Google Scholar 

  7. Ch.-H. Lee, Y.M. Low, and Y.-M. Chiew, Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour, Phys. Fluids, 2016, Vol. 28, No. 5, P. 053305–1–053305–23.

    Article  ADS  Google Scholar 

  8. Z. Cheng, T.-J. Hsu, and J. Calantoni, SedFoam: a multi-dimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure, Coastal Engng, 2017, Vol. 119, P. 32–50.

    Article  Google Scholar 

  9. M. Manninen, V. Taivassalo, and S. Kallio, On the mixture model for multiphase flow, VTT Publications 288. Technical Research Centre of Finland. 1996.

  10. L.I. Zaichik, N.I. Drobyshevsky, A.S. Filippov, R.V. Mukin, and V.F. Strizhov, A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows, Inter. J. Heat Mass Transfer, 2010, Vol. 53, P. 154–162.

    Article  MATH  Google Scholar 

  11. M.I. Cantero, S. Balachandar, and M.H. Garcia, An Eulerian-Eulerian model for gravity currents driven by inertial particles, Inter. J. Multiphase Flow, 2008, Vol. 34, P. 484–501.

    Article  Google Scholar 

  12. P.R. Nott, E. Guazzelli, and O. Pouliquen, The suspension balance model revisited, Phys. Fluids, 2011, Vol. 23, No. 4, P. 043304–1–043304–13.

    Article  ADS  Google Scholar 

  13. L.I. Zaichik, R.V. Mukin, L.S. Mukina, V.F. Strizhov, and A.S. Filippov, Development of a diffusion-inertia model for calculating bubble turbulent flows: Isothermal polydispersed flow in a vertical pipe, High Temperature, 2012, Vol. 50, No. 1, P. 621–630.

    Article  Google Scholar 

  14. A.A. Gavrikov and A.V. Shebelev, Single-fluid model of a mixture for laminar flows of highly concentrated suspensions, Fluid Mechanics, 2018, Vol. 53, No. 2, P. 255–269.

    MATH  Google Scholar 

  15. V.M. Alipchenkov and L.I. Zaichik, Nonlinear algebraic model of the Reynolds stresses for a disperse turbulent flow with low-inertia particles, Fluid Dynamics, 2010, Vol. 45, P. 909–923.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Isaev, P. Baranov, I. Popov, A. Sudakov, A. Usachov, S. Guvernyuk, A. Sinyavin, A. Chulyuninm A. Mazom, D. Demidov, A. Dekterev, A. Gavrilov, and A. Shebelev, Numerical simulation and experiments on turbulent air flow around the semi-circular profile at zero angle of attack and moderate Reynolds number, Computers and Fluids, 2019, Vol. 188, P. 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Manceu, Recent progress in the development of the Elliptic blending Reynolds-stress model, Inter. J. Heat Fluid Flow, 2015, Vol. 51, P. 195–220.

    Article  Google Scholar 

  18. P.A. Durbin, Near-wall turbulence closure modeling without “damping functions”, Theoretical and Computational Fluid Dynamics, 1991, Vol. 3, No. 1, P. 1–13.

    ADS  MathSciNet  MATH  Google Scholar 

  19. S. Balachandar and J. Eaton, Turbulent dispersed multiphase flow, Annual Review of Fluid Mechanics, 2010, Vol. 42, P. 111–133.

    Article  ADS  MATH  Google Scholar 

  20. S.E. Elgobashi and T.W. Abou-Arab, A two-equation turbulence model for two-phase flows, Phys. Fluids, 1983, Vol. 26, P. 931–938.

    Article  ADS  MATH  Google Scholar 

  21. C.T. Crowe, On models for turbulence modulation in fluid-particle flows, Inter. J. Multiphase Flow, 2000, Vol. 26, P. 719–727.

    Article  MATH  Google Scholar 

  22. M.F. Lightstone and S.M. Hodgson, Turbulence modulation in gas-particle flows: a comparison of selected models, The Canadian J. Chemical Engng, 2004, Vol. 82, P. 209–219.

    Article  Google Scholar 

  23. L.I. Zaichik and A.Yu. Varaksin, Effect of the wake behind large particles on the turbulence intensity of carrier flow. High Temperature, 1999, Vol. 37, No. 4, P. 655–658.

    Google Scholar 

  24. S. Lain and M. Sommerfeld, Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective, Inter. J. Heat Fluid Flow, 2003, Vol. 24, P. 616–625.

    Article  Google Scholar 

  25. M. Mandø, M.F. Lightstone, L. Rosendahl, C. Yin, and H. Sørensen, Turbulence modulation in dilute particle-laden flow, Inter. J. Heat Fluid Flow, 2009, Vol. 30, P. 719–727.

    Article  Google Scholar 

  26. G.V. Messa and S. Malavasi, Numerical prediction of dispersed turbulent liquid-solid flows in vertical pipes, J. Hydraulic Research, 2014, Vol. 52, No. 5, P. 684–692.

    Article  Google Scholar 

  27. J. Capecelatro and O. Desjardins, Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes, Inter. J. Multiphase Flow, 2013, Vol. 55, P. 64–79.

    Article  Google Scholar 

  28. J. Capecelatro, O. Desjardins, and R. Fox, Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling, Phys. Fluids, 2016, Vol. 28, No. 3, P. 033307–1–033307–42.

    ADS  Google Scholar 

  29. B. Oesterlé and L. Zaichik, Time scales for predicting dispersion of arbitrary-density particles in isotropic turbulence, Inter. J. Multiphase Flow, 2006, Vol. 32, P. 838–849.

    Article  MATH  Google Scholar 

  30. L.-P. Wang and D.E. Stock, Dispersion of heavy particles by turbulent motion, J. Atmos. Sci., 1993, Vol. 50, P. 1897–1913.

    Article  ADS  Google Scholar 

  31. N.S. Cheng and A.W.K. Law, Exponential formula for computing effective viscosity, Powder Technol., 2003, Vol. 129, P. 156–160.

    Article  Google Scholar 

  32. P.C. Johnson and R. Jackson, Frictional-collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech., 1987, Vol. 176, P. 67–93.

    Article  ADS  Google Scholar 

  33. F. Picano, W.-P. Breugem, D. Mitra, and L. Brandt, Shear thickening in non-Brownian suspensions: an excluded volume effect, Phys. Rev. Lett., 2013, Vol. 111, No. 9, P. 098302–1–098302–5.

    Article  ADS  Google Scholar 

  34. D. Alghalibi, I. Lashgarim L. Brandt, and S. Hormozi, Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids, J. Fluid Mech., 2018, Vol. 852, P. 329–357.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. E. Koos, E. Linares-Guerrero, M.L. Hunt, and C.E. Brennen, Rheological measurements of large particles in high shear rate flows, Phys. Fluids, 2012, Vol. 24, No. 1, P. 013302–1–013302–19.

    Article  ADS  Google Scholar 

  36. E. Linares-Guerrero, M.L. Hunt, and R. Zenit, Effects of inertia and turbulence on rheological measurements of neutrally buoyant suspensions, J. Fluid Mech., 2017, Vol. 811, P. 525–543.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles. Academic Press, 1978.

  38. D. Legendre and J. Magnaudet, The lift force on a spherical bubble in a viscous linear shear flow, J. Fluid Mech., 1998, Vol. 368, P. 81–126.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. F. Moraga, F. Bonetto, and R. Lahey, Lateral forces on spheres in turbulent uniform shear flow, Inter. J. Multiphase Flow, 1999, Vol. 25, No. 6–7, P. 1321–1372.

    Article  MATH  Google Scholar 

  40. Y. Ignatenko, O. Bocharov, R. May, A. Gavrilov, A. Shebelev, and A. Dekterev, Continual modeling of cutting transport during drilling, AIP Conference Proceedings, 2018, Vol. 1939, No. 1, P. 020044–1–020044–6.

    Google Scholar 

  41. M. Roco and N. Balakrishnam, Multi-dimensional flow analysis of solid-liquid mixtures, J. Rheol., 1985, Vol. 29, P. 431–456.

    Article  ADS  MATH  Google Scholar 

  42. R.G. Gillies, C.A. Shook, and J. Xu, Modelling heterogeneous slurry flow at high velocities, Can. J. Chem. Engng, 2004, Vol. 82, No. 5, P. 1060–1065.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gavrilov.

Additional information

Research was performed according to the government order for ITP SB RAS (AAAA-A17-117030910025-7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, A.A., Shebelev, A.V. Rheology model for turbulent suspension flow through a horizontal channel. Thermophys. Aeromech. 27, 381–397 (2020). https://doi.org/10.1134/S0869864320030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864320030075

Keywords

Navigation