Skip to main content
Log in

Unsteady numerical solutions for a plane jet issuing from a narrow slit into a submerged space

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The results of numerical simulations of a jet discharging from a narrow slit at low Reynolds numbers Re are presented. A comparison with the data of laboratory experiments is performed, and it is shown that steady numerical solutions with increasing Re transform into unsteady solutions with self-excitation of sinusoidal instability. Lateral oscillations are superimposed at the inlet section, and their influence on the jet behavior is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gau, C.H. Shen, and Z.B. Wang, Peculiar phenomenon of micro-free-jet flow, Phys. Fluids, 2009, Vol. 21, Iss. 9, P. 092001–1–092001–13.

    Article  ADS  Google Scholar 

  2. V.V. Kozlov, G.R. Grek, Yu.A. Litvinenko, G.V. Kozlov, and M.V. Litvinenko, Subsonic round and plane macro- and microjets in a transverse acoustic field, Vestnik NGU. Ser. Fiz., 2010, Vol. 5, Iss. 2, P. 28–42.

    Google Scholar 

  3. V.V. Lemanov, V.I. Terekhov, K.A. Sharov, and A.A. Shumeiko, An experimental study of submerged jets at low Reynolds numbers, Tech. Phys. Lett., 2013, Vol. 39, No. 5 P. 421–423.

    Article  ADS  Google Scholar 

  4. V.V. Kozlov, G.R. Grek, O.P. Korobeinichev, Yu.A. Litvinenko, and A.G. Shmakov, The features of hydrogen combustion in round and plane microjets in a transverse acoustic field, and comparison with the results of propane combustion, Vestnik NGU. Ser. Fiz., 2014, Vol. 9, Iss. 1, P. 79–86.

    Google Scholar 

  5. V.F. Kopiev, N.N. Ostrikov, M.Yu. Zaitsev, and S.A. Chernyshev, RU Patent 2357109 C1 (27 May 2009).

  6. Z. Senouci and M. Benabed, Numerical approach to new tangential slot effect on film cooling effectiveness over asymmetrical turbine blade, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 5 P. 721–734.

    Article  ADS  Google Scholar 

  7. V.I. Kornilov, A.V. Boiko, and I.N. Kavun, Control of turbulent boundary layer through air blowing due to external-flow resources, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 4 P. 413–426.

    Article  ADS  Google Scholar 

  8. G.V. Kozlov, G.P. Grek, A.M. Sorokin, and Yu.A. Litvinenko, Influence of initial conditions at the nozzle exit on the flow structure and instability of a plane jet, Vestnik NGU. Ser. Fiz., 2008, Vol. 3, Iss. 3, P. 14–33.

    Google Scholar 

  9. W.C. Reynolds, D.E. Parekh, P.J.D. Juvet, and M.J.D. Lee, Bifurcating and blooming jets, Annu. Rev. Fluid Mech., 2003, Vol. 35, P. 295–315.

    Article  ADS  MathSciNet  Google Scholar 

  10. K.N. Volkov, V.N. Emelyanov, and V.A. Zazimko, Turbulent Jets — Statistical Models and Large Eddy Simulation, Fizmatlit, Moscow, 2013, 360.

    Google Scholar 

  11. I. Danaila and B.J. Boersma, Direct numerical simulation of bifurcating jets, Phys. Fluids, 2000, Vol. 12, Iss. 5, P. 1255–1257.

    Article  ADS  Google Scholar 

  12. A. Tyliszczak, Parametric study of multi-armed jets, Int. J. Heat Fluid Flow, 2018, Vol. 73, P. 82–100.

    Article  Google Scholar 

  13. J. Mi, R.C. Deo, and G.J. Nathan, Characterization of turbulent jets from high-aspect-ratio rectangular nozzles, Phys. Fluids, 2005, Vol. 17, Iss. 6, P. 068102–1–068102–4.

    Article  ADS  Google Scholar 

  14. R.C. Deo, G.J. Nathan, and J. Mi, Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls, Exp. Therm. Fluid Sci., 2007, Vol. 32, P. 596–606.

    Article  Google Scholar 

  15. V.M. Aniskin, A.A. Maslov, and K.A. Mukhin, Structure of subsonic plane microjets, Microfluid. Nanofluid., 2019, Vol. 23, Iss. 4, P. 57–1–57–16.

    Article  Google Scholar 

  16. C. Le Ribault, S. Sarkar, and S.A. Stanley, Large eddy simulation of a plane jet, Phys. Fluids, 1999, Vol. 11, Iss. 10, P. 3069–3083.

    Article  ADS  Google Scholar 

  17. S.A. Stanley, S. Sarkar, and J.P. Mellado, A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation, J. Fluid Mech., 2002, Vol. 450, P. 377–407.

    Article  ADS  Google Scholar 

  18. T. Watanabe, Y. Sakai, K. Nagata, Y. Ito, and T. Hayase, Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet, J. Fluid Mech., 2014, Vol. 758, P. 754–785.

    Article  ADS  MathSciNet  Google Scholar 

  19. O.A. Shmagunov, Modeling of jet flows of a viscous fluid by the discrete vortex method, J. Appl. Mech. Tech. Phys., 2012, Vol. 53, No. 1 P. 20–26.

    Article  ADS  Google Scholar 

  20. R. Betchov and W.O. Criminale, Stability of Parallel Flows, Academic Press, New York, 1967.

    MATH  Google Scholar 

  21. M.F. Paisley, I.P. Castro, and N.J. Rockliff, Steady and unsteady computations of strongly stratified flows over a vertical barrier, in: Stably Stratified Flows: Flow and Dispersion over Topography, Clarendon Press, Oxford, 1994, P. 39–59.

    MATH  Google Scholar 

  22. F.J. Kelecy and R.H. Pletcher, The development of a free surface capturing approach for multidimensional free surface flows in closed containers, J. Comput. Phys., 1997, Vol. 138, P. 939–980.

    Article  ADS  Google Scholar 

  23. S.N. Yakovenko, The effects of density difference and surface tension on the development of Rayleigh-Taylor instability of an interface between fluid media, Fluid Dynamics, 2014, Vol. 49, No. 6 P. 748–760.

    Article  MathSciNet  Google Scholar 

  24. A.F. Kurbatskii and S.N. Yakovenko, Numerical investigation of a turbulent flow around a two-dimensional obstacle in the boundary layer, Thermophysics and Aeromechanics, 1996, Vol. 3, No. 2 P. 137–155.

    Google Scholar 

  25. S.N. Yakovenko and K.C. Chang, Performance examination of geometry-independent second-moment closures in simple and backstep flows, Numerical Heat Transfer, Part B: Fundamentals, 2007, Vol. 51, Iss. 2, P. 179–204.

    Article  ADS  Google Scholar 

  26. S.N. Yakovenko, Modeling of plane jet at moderate Reynolds numbers, AIP Conference Proceedings, 2017, Vol. 1893, Iss. 1, P. 030101–1–030101–5.

    Article  Google Scholar 

  27. H. Sato and F. Sakao, An experimental investigation of the instability of a two-dimensional jet at low Reynolds numbers, J. Fluid Mech., 1964, Vol. 20, P. 337–352.

    Article  ADS  Google Scholar 

  28. T. Peacock, E. Bradley, J. Hertzberg, and Y.-C. Lee, Forcing a planar jet flow using MEMS, Exp. Fluids, 2004, Vol. 37, P. 22–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Yakovenko.

Additional information

The work was financially supported by the Russian Foundation for Basic Research (Project No. 17-01-00332a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, S.N. Unsteady numerical solutions for a plane jet issuing from a narrow slit into a submerged space. Thermophys. Aeromech. 26, 711–721 (2019). https://doi.org/10.1134/S0869864319050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864319050081

Keywords

Navigation