Skip to main content
Log in

A numerical study of transient flow around a cylinder and aerodynamic sound radiation

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The fully 3D turbulent incompressible flow around a cylinder and in its wake at a Reynolds number Re = = 9×104 based on the cylinder diameter and Mach number M = 0.1 is calculated using Large Eddy Simulations (LES). Encouraging results are found in comparison to experimental data for the fluctuating lift and drag forces. The acoustic pressure in far-field is commutated through the surface integral formulation of the Ffowcs Williams and Hawkings (FWH) equation in acoustic analogy. Five different sound sources, the cylinder wall and four permeable surfaces in the flow fields, are employed. The spectra of the sound pressure are generally in quantitative agreement with the measured one though the acoustic sources are pseudo-sound regarding the incompressible flow simulation. The acoustic component at the Strouhal number related to vortex shedding has been predicted accurately. For the broad band sound, the permeable surfaces in the near wake region give qualitative enough accuracy level of predictions, while the cylinder wall surface shows a noticeable under-prediction. The sound radiation of the volumetric sources based on Lighthill tensors at vortex shedding is also studied. Its far-field directivity is of lateral quadrupoles with the weak radiations in the flow and cross-flow directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Sumer and J. Fredsoe, Hydrodynamics Around Cylindrical Structures, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006.

    Book  MATH  Google Scholar 

  2. C. Norberg, Fluctuating lift on a circular cylinder: review and new measurements, J. Fluids and Structures, 2003, Vol.17, No. 1, P. 57–96.

    Google Scholar 

  3. O. Lehmkuhl, I. Rodríguez, R. Borrell, and A. Oliva, Low–frequency unsteadiness in the vortex formation regi–on of a circular cylinder, Phys. Fluids, 2013, vol. 25, no. 8, p. 085109–1–085109–21.

    Article  ADS  Google Scholar 

  4. C. Wagner, P. Sagaut, and T. Hüttl, Large–eddy Simulation for Acoustics: Introduction, Cambridge University Press, London, 2012.

    Google Scholar 

  5. M. Wang, J. Freund, and S. Lele, Computational prediction of flow–generated sound, Annu. Rev. Fluid Mech., 2006. Vol. 38, No. 1, P. 483–512.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. O. Inoue and N. Hatakeyama, Sound generation by a two–dimensional circular cylinder in a uniform flow, J. Fluid Mech., 2002, vol. 471, p. 285–314.

    Article  ADS  MATH  Google Scholar 

  7. B. Müller, High order numerical simulation of aeolian tones, Comp. & Fluids, 2008, vol. 37, no. 4, p. 450–462.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Lighthill, On sound generated aerodynamically. I. General theory, Proc. Roy. Soc. London. Series A, Mathe–matical and Physical Sci., 1952, vol. 211, no. 1107, p. 564–587.

    Article  MATH  Google Scholar 

  9. N. Curle, The influence of solid boundaries upon aerodynamic sound, Proc. Roy. Soc. London. Series A, Mathematical and Physical Sci., 1955, vol. 231, no. 1187, p. 505–514.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.F. Williams and D. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Proc Roy. Soc. London. Series A, Mathematical and Physical Sci., 1969, vol. 264, no. 1151, p. 321–342.

    MATH  Google Scholar 

  11. F. Farassat, Derivation of formulations 1 and 1A of farassat, NASA TM–2007–214853, NASA Langley Research Center, Washington, DC, 2007.

    Google Scholar 

  12. J. Larsson, Computational aero acoustics for vehicle applications, Dept. Thermo and Fluid Dynamics, Chalmers University of Technology, Licentiate, 2002.

    Google Scholar 

  13. F. Margnat, Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence, Comp. & Fluids, 2015, vol. 109, p. 13–26.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Weinmann, R.D. Sandberg, and C. Doolan. Tandem cylinder flow and noise predictions using a hybrid RANS/LES approach // Int. J. of Heat and Fluid Flow. 2014. Vol. 50. P. 263–278.

    Google Scholar 

  15. J.S. Cox, K.S. Brentner, and C.L. Rumsey, Computation of vortex shedding and radiated sound for a circular cylinder: subcritical to transcritical Reynolds numbers, Theoret. Comput. Fluid Dynamics, 1998, vol. 12, no. 4, p. 233–253.

    Article  ADS  MATH  Google Scholar 

  16. D. Casalino and M. Jacob, Prediction of aerodynamic sound from circular rods via spanwise statistical modelling, J. Sound and Vibration, 2003, vol. 262, no. 4, p. 815–844.

    Article  ADS  Google Scholar 

  17. C.J. Doolan, Computational bluff body aerodynamic noise prediction using a statistical approach, Appl. Acoustics, 2010, vol. 71, no. 12, p. 1194–1203.

    Article  Google Scholar 

  18. J. Boudet, D. Casalino, M. Jacob, and P. Ferrand, Prediction of sound radiated by a rod using large eddy simulation, in: 9th AIAA/CEAS Aeroacoustics Conf. and Exhibit, AIAA 2003, Vol. 11, Iss. 3175/3251, P. 1089–1097.

    Book  Google Scholar 

  19. J.H. Seo and Y.J. Moon, Aerodynamic noise prediction for long–span bodies, J. Sound and Vibration, 2007, Vol. 306, No. 3–5, P. 564–579.

    Article  ADS  Google Scholar 

  20. O. Reinaldo, M. Julio, and S. Fabio, Two and three–dimensional simulation of sound generated by flow around a circular cylinder, in: 15th AIAA/CEAS Aeroacoustics Conf. (30th AIAA Aeroacoustics Conference), AIAA, 2009–1097.

    Google Scholar 

  21. L. Guo, X. Zhang, and G. He, Large–eddy simulation of circular cylinder flow at subcritical Reynolds number: turbulent wake and sound radiation, Acta Mechanica Sinica, 2016, vol. 32, no. 1, p. 1–11.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. W.–S. Choi, Y. Choi, S.–Y. Hong, J.–H. Song, H.–W. Kwon, and C.–M. Jung, Turbulence–induced noise of a submerged cylinder using a permeable FW–H method, Int. J. Naval Architecture and Ocean Engng, 2016, vol. 8, no. 3, p. 235–242.

    Article  Google Scholar 

  23. J.D. Revell, R.A. Prydz, A.P. Hays, Experimental study of aerodynamic noise vs drag relationships for circular cylinders, AIAA J., 1978, Vol.16, No.9, p. 889–897.

    Google Scholar 

  24. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics the Finite Volute Method. 2nd ed., Pearson Education Limited, Essex, 2007.

    Google Scholar 

  25. S. Kim, P.A. Wilson, and Z.–M. Chen, Effect of turbulence modelling on 3D LES of transitional flow behind a circular cylinder, Ocean Engng, 2015, vol. 100, no. 5, p. 19–25.

    Article  Google Scholar 

  26. X. Gloerfelt, F. Pérot, C. Bailly, and D. Juvé, Flow–induced cylinder noise formulated as a diffraction problem for low Mach numbers, J. Sound and Vibration, 2005, Vol. 287, No. 1–2, P. 129–151.

    Article  ADS  Google Scholar 

  27. C.J. Doolan, Large eddy simulation of the near wake of a circular cylinder at sub–critical Reynolds number, Engng Applications of Computational Fluid Mechanics, 2010, vol. 4, no. 4, p. 496–510.

    Article  Google Scholar 

  28. A.H. Lee, R.L. Campbell, and S.A. Hambric, Coupled delayed–detached–eddy simulation and structural vibra–tion of a self–oscillating cylinder due to vortex–shedding, J. Fluids and Structures, 2014, vol. 48, no. 7, p. 216–234.

    Article  ADS  Google Scholar 

  29. M.H. Kazeminezhad, A. Yeganeh–Bakhtiary, and A. Etemad–Shahidi, Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline, Appl. Ocean Research, 2010, vol. 32, no. 4, p. 460–470.

    Article  Google Scholar 

  30. S.E. Kim, Large eddy simulation of turbulent flow past a circular cylinder in subcritical regime, in: 44th AIAA Aerospace Sci. Meeting and Exhibit, Reno, Nevada, AIAA 2006–1418.

    Book  Google Scholar 

  31. E. Achenbach, Distribution of local pressure and skin friction around a circular cylinder in cross–flow up to Re = 5·106, J. Fluid Mech., 1968, vol. 34, no. 4, p. 625–639.

    Article  ADS  Google Scholar 

  32. U.u.O. Ünal, M. Atlar, and Ö. Gören, Effect of turbulence modelling on the computation of the near–wake flow of a circular cylinder, Ocean Engng, 2010, vol. 37, no. 4, p. 387–399.

    Article  Google Scholar 

  33. R.D. Blevins, Flow–induced Vibration. 2nd ed., Van Nostrand Reinhold Company, Inc., N.Y., 1990.

    MATH  Google Scholar 

  34. C. Lei, L. Cheng, and K. Kavanagh, Re–examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder, J. Wind Engng and Industrial Aerodynamics, 1999, vol. 80, no. 3, p. 263–286.

    Article  Google Scholar 

  35. J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 1995, vol. 285, p. 69–94.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. ANSYS Inc., ANSYS Fluent 16.1 Theory Guide Chapter 15. Aerodynamically Generated Noise, 2015.

    Google Scholar 

  37. S. Ianniello, Quadrupole noise predictions through the Ffowcs Williams–Hawkings equation, AIAA J., 1999, vol. 37, no. 9, p. 1048–1054.

    Article  ADS  Google Scholar 

  38. M. Wang, S. Lele, and P. Moin, Computation of quadrupole noise using acoustic analogy, AIAA J., 1996, vol. 34, no. 11, p. 2247–2254.

    Article  ADS  MATH  Google Scholar 

  39. K.S. Brentner and P.C. Holland, An efficient and robust method for computing quadrupole noise, J. Amer. Helicopter Soc., 1997, vol. 42, no. 2, p. 172–181.

    Article  Google Scholar 

  40. K. Chisachi, I. Akiyoshi, T. Yasushi, F. Hajime, and I. Masahiro, Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake, in: 31st Aerospace Sci. Meeting, AIAA, 1993–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Cai.

Additional information

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 51306163), the Zhejiang Provincial Natural Science Foundation of China (Grants Nos. LY18E060006 and LQ13E060001), and the CRC for Infrastructure Engineering Asset Management (CIEAM) of Australia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, JC., Pan, J., Kryzhanovskyi, A. et al. A numerical study of transient flow around a cylinder and aerodynamic sound radiation. Thermophys. Aeromech. 25, 331–346 (2018). https://doi.org/10.1134/S0869864318030022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864318030022

Key words

Navigation