Skip to main content
Log in

Deformation of a bubble formed by coalescence of cavitation inclusions and shock wave inside it at strong expansion and compression

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Dynamics of a cavitation bubble is considered at its strong expansion and subsequent compression. The bubble is formed by merging of two identical spherical cavitation microcavities in the pressure antinode of the intensive ultrasonic standing wave in the half-wave phase with negative pressure. Deformations of bubble and deformations of radially converging shock waves occurring therein at bubble compression are studied depending on the size of microcavities forming the bubble. It is found that compression of the medium in the bubble by the converging shock wave is kept close to the spherical one only in the case, when the radius of merging microcavities is 1800 times smaller than the radius of the bubble formed by merging at the time of its maximal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Suslick, Sonochemistry, Science, 1990, Vol. 247, P. 1439–1445.

    Article  ADS  Google Scholar 

  2. E. Johnsen and T. Colonius, Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoustical Society of America, 2008, Vol. 124, No. 4, P. 2011–2020.

    Article  ADS  Google Scholar 

  3. D.J. Flannigan and K.S. Suslick, Inertially confined plasma in an imploding bubble, Nature Physics, 2010, Vol. 6, P. 598–601.

    Article  ADS  Google Scholar 

  4. W.C. Moss, D.B. Clarke, and D.A. Young, Calculated pulse widths and spectra of a single sonoluminescing bubble, Science, 1997, Vol. 276, P. 1398–1401.

    Article  Google Scholar 

  5. R.I. Nigmatulin, I.Sh. Akhatov, R.K. Bolotnova, A.S. Topolnikov, N.K. Vakhitova, R.T. Lahey, and R.P. Taleyarkhan, The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion, Phys. Fluids, 2005, Vol. 17, P. 107106–1−107106-31.

    Article  ADS  MATH  Google Scholar 

  6. A. Bass, S.J. Ruuth, C. Camara, B. Merriman, and S. Putterman, Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble, Phys. Rev. Lett., 2008, Vol. 101, P. 234301–1−234301-4.

    Article  ADS  Google Scholar 

  7. M.S. Plesset and T.P. Mitchell, On the stability of the spherical shape of a vapor cavity in a liquid, Quart. Appl. Math., 1956, Vol. 13, No 4, P. 419–430.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.K. Evans, Instability of converging shock waves and sonoluminescence, Phys. Rev. E., 1996, Vol. 54, No 5, P. 5004–5011.

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Brenner, S. Hilgenfeldt, and D. Lohse, Single-bubble sonoluminescence, Rev. Mod. Phys., 2002, Vol. 74, P. 425–484.

    Article  ADS  Google Scholar 

  10. R.I. Nigmatulin, M.A. Ilgamov, A.A. Aganin, and D.Yu. Toporkov, Evolution of deviations from the spherical shape of a vapor bubble in supercompression, J. Appl. Mech. Tech. Phys., 2014, Vol. 55, No. 3. P. 444–461.

    Article  ADS  MathSciNet  Google Scholar 

  11. B.D. Storey, Shape stability of sonoluminescence bubbles: Comparison of theory to experiments, Phys. Rev. E, 2001, Vol. 64, P. 017301–1−017301-3.

    Article  ADS  Google Scholar 

  12. A.A. Aganin, M.A. Ilgamov, L.A. Kosolapova, and V.G. Malakhov, Non-linear non-spherical oscillations of gas bubble under a periodic variation of ambient liquid pressure, Thermophysics and Aeromechanics, 2008, Vol. 15, No. 3, P. 491–502.

    Article  ADS  Google Scholar 

  13. A.A. Aganin, L.A. Kosolapova, and V.G. Malakhov, Nonlinear radial oscillations and spatial translations of a nonspherical gas bubble in a liquid, Mathematical Models and Computer Simulations, 2012, Vol. 4, No. 1, P. 26–35.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.A. Aganin, D.Yu. Toporkov, T.F. Khalitova, and N.A. Khismatullina, Evolution of small sphericity distortion of a vapor bubble during its supercompression, Mathematical Models and Computer Simulations, 2012, Vol. 4, No. 3, P. 344–354.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.I. Nigmatulin, R.T. Lahey Jr., R.P. Taleyarkhan, C.D. West, and R.C. Block, On thermonuclear processes in cavitating bubbles, Physics-Uspekhi, 2014, Vol. 57, No. 9, P. 877–890.

    Article  ADS  Google Scholar 

  16. S.T. Thoroddsen, T.G. Etoh, K. Takehara, and N. Ootsuka, On the coalescence speed of bubbles, Phys. Fluids, 2005, Vol. 17, P. 071703–1−071703-4.

    Article  ADS  MATH  Google Scholar 

  17. M.A. Ilgamov, Expansion, compression, and stability of a cavity in a fluid under strong acoustic forcing, Doklady Physics, 2010, Vol. 55, No. 7, P. 317–320.

    Article  ADS  Google Scholar 

  18. M.A. Ilgamov, Deviation from sphericity of a vapor cavity at the time of collapse, Doklady Physics, 2011, Vol. 56, No. 9, P. 455–458.

    Article  ADS  Google Scholar 

  19. A.A. Aganin, Dynamics of a small bubble in a compressible fluid, Int. J. Numer. Meth. Fluids, 2000, Vol. 33, P. 157–174.

    Article  MATH  Google Scholar 

  20. A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy, Uniformly high order accurate essentially nonoscillatory schemes III, J. Соmр. Phys., 1987, Vol. 71, P. 231–303.

    ADS  MathSciNet  MATH  Google Scholar 

  21. A.A. Aganin, M.A. Ilgamov, and T.F. Khalitova, Simulation of strong compression of a gas cavity in liquid, Mathematical Models and Computer Simulations, 2009, Vol. 1, No. 5, P. 646–658.

    Article  MathSciNet  MATH  Google Scholar 

  22. A.A. Aganin, T.F. Khalitova, and N.A. Khismatullina, A numerical method to solve problems of strong collapse of a nonspherical cavitation bubble, Computational Technologies, 2010, Vol. 15, No. 1, P. 14–32.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Toporkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganin, A.A., Ilgamov, M.A., Khalitova, T.F. et al. Deformation of a bubble formed by coalescence of cavitation inclusions and shock wave inside it at strong expansion and compression. Thermophys. Aeromech. 24, 73–81 (2017). https://doi.org/10.1134/S0869864317010085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864317010085

Key words

Navigation