Skip to main content
Log in

Numerical investigation of a standing-wave thermoacoustic device

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The thermoacoustic effect concerns conversion of energy between a gas and a solid in the presence of acoustic waves. Although the working principle is well understood, the optimal design of thermoacoustic devices remains a challenge. The present work aims to perform a numerical simulation of a simple standing-wave thermoacoustic device. The analysis of the flow and the prediction of the heat transfer are performed by solving the non-linear unsteady Navier–Stokes equations using the finite volume method implemented in the commercial code ANSYS-CFX. The goal of this work is to study the effect of the stack temperature gradient, on the acoustic pressure and the produced acoustic power. This stack temperature gradient generates the thermoacoustic instability in standing-wave thermoacoustic resonator. The obtained results show an increase of the acoustic pressure and the acoustic power while increasing in the stack temperature gradient. The thermodynamic cycles of the thermoacoustic device are illustrated and observed for the different stack temperature gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Tasnim, S. Mahmud, and R.A. Fraser, Effects of variation in working fluids and operating conditions on the performance of a thermoacoustic refrigerator, Inter. Commun. Heat and Mass Transfer, 2012, Vol. 39, P. 762–768.

    Article  Google Scholar 

  2. H. Hatori, T. Biwa, and T. Yazaki, How to build a loaded thermoacoustic engine, J. Appl. Phys., 2012, Vol. 111, No. 7, P. 074905–073710.

    Article  ADS  Google Scholar 

  3. S. Backhaus, E. Tward, and M. Petach, Traveling-wave thermoacoustic electric generator, Appl. Phys. Lett., 2004, Vol. 85, P. 1085–1087.

    Article  ADS  Google Scholar 

  4. G.W. Swift and J.J. Wollan, Thermoacoustics for liquefaction of natural gas, GasTIPS. 2002, Vol. 8, No. 4, P. 21–26.

    Google Scholar 

  5. N. Cao, J. Olson, G.W. Swift, and S. Chen, Energy flux density in a thermoacoustic couple, J. Acoust. Soc. Am., 1996, Vol. 99, No. 6, P. 3456–3464.

    Article  ADS  Google Scholar 

  6. A.S. Worlikar and O.M. Knio, Numerical simulation of thermoacoustic refrigerators, J. Comput. Phys., 1996, Vol. 127, P. 424–451.

    Article  MATH  ADS  Google Scholar 

  7. E. Besnoin and O.M. Knio, Numerical study of thermoacoustic heat exchangers in the thin plate limit, Numer. Heat Transfer, Part A: Applications, 2001, Vol. 40, P. 445–471.

    Article  ADS  Google Scholar 

  8. E. Besnoin, Numerical study of thermoacoustic heat exchangers. PhD thesis, Johns Hopkins University, Baltimore, Maryland, 2001.

    Google Scholar 

  9. D. Marx and P. Blanc-Benon, Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator, AIAA J., 2004, Vol. 42, P. 1338–1347.

    Article  ADS  Google Scholar 

  10. L.A.J. Nijeholt, M.E.H. Tijani, and S. Spoelstra, Simulation of a traveling wave thermoacoustic engine using computational fluid dynamics, J. Acoust. Soc. Am., 2005, Vol. 118, No. 4, P. 2265–2270.

    Article  ADS  Google Scholar 

  11. G. Yu, W. Dai, and E. Luo, CFD simulation of a 300 Hz thermoacoustic standing wave engine, Cryogenics, 2010, Vol. 50, No. 9, P. 615–622.

    Article  ADS  Google Scholar 

  12. F. Zink, J. Vipperman, and L. Schaefer, CFD simulation of a thermoacoustic engine with coiled resonator, Inter. Commun. Heat and Mass Transfer, 2010, Vol. 37, No. 3, P. 226–229.

    Article  Google Scholar 

  13. F. Zink, J. Vipperman, and L. Schaefer, CFD simulation of thermoacoustic cooling, Int. J. Heat and Mass Transfer, 2010, Vol. 53, No. 19-20, P. 3940–3946.

    Article  Google Scholar 

  14. O. Hireche, C. Weisman, D. Baltean-Carlés, P. Le Quéré, and L. Bauwens, Low mach number analysis of idealized thermoacoustic engines with numerical solution, J. Acoust. Soc. Am., 2010, Vol. 128, No. 6, P. 3438–3448.

    Article  ADS  Google Scholar 

  15. G. Swift, Thermoacoustics, Springer Handbook of Acoustics, Springer, New York, 2007, P. 239–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.Z. Dar Ramdane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar Ramdane, M., Khorsi, A. Numerical investigation of a standing-wave thermoacoustic device. Thermophys. Aeromech. 22, 313–318 (2015). https://doi.org/10.1134/S0869864315030051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864315030051

Keywords

Navigation