Skip to main content
Log in

Composition and Age of Rocks of the Provenance Areas for the Lower–Middle Cambrian (?) Terrigenous Sediments of the Ernichnaya Formation of the Argun Massif, Eastern Part of the Central Asian Foldbelt

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The results of mineralogical and geochemical studies of sandstones and siltstones of the Ernichnaya Formation of the Argun Series of the Argun continental massif and the U–Pb (LA-ICP-MS) age of their detrital zircon are presented. It is found that the youngest group of detrital zircon has the age of 549–570 Ma with a maximum on the probability density curve of zircon ages of 566 Ma. This suggests that the lower age boundary of their accumulation corresponds to the Ediacaran–Paleozoic boundary. According to the results of U–Pb (LA-ICP-MS) dating of zircon grains, the dominant zircons in sandstones of the sequence have Neo- and Paleoproterozoic ages. These zircons were probably sourced from the Neo- and Paleoproterozoic igneous and metamorphic rocks widely abundant within the Argun continental massif. The geochemical features of terrigenous rocks of the sequence together with the presence of poorly sorted and weakly rounded rock clasts in the studied samples, as well as the presence of interlayers of gravelites in structure of the sequence, indicate their accumulation in a subduction-related setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bhatia, M.R. and Crook, K.A.W., Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins, Contrib. Mineral. Petrol., 1986, vol. 92, pp. 181–193.

    Article  Google Scholar 

  2. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, vol. 191, no. 4, pp. 305–327.

    Article  Google Scholar 

  3. Feng, Z., Zhang, Q., Liu, Y., Li, L., Jiang, L., Zhou, J., Li, W., and Ma, Y., Reconstruction of Rodinia supercontinent: evidence from the Erguna Block (NE China) and adjacent units in the eastern Central Asian orogenic Belt, Precambrian Res., 2022, vol. 368, 106467.

    Article  Google Scholar 

  4. Floyd, P.A. and Leveridge, B.E., Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones, J. Geol. Soc. London, 1987, vol. 144, no. 4, pp. 531–542.

    Article  Google Scholar 

  5. Ge, W.C., Chen, J.S., Yang, H., Zhao, G.C., Zhang, Y.L., and Tian, D.X., Tectonic implications of new zircon U–Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing’an Range, NE China, J. Asian Earth Sci., 2015, vol. 106, pp. 169–185.

    Article  Google Scholar 

  6. Gehrels, G.E., AgePick, https://sites.google.com/a/laserchron.org/laserchron/home/, 2007

  7. Gerdes, A. and Zeh, A., Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet. Sci. Lett., 2006, vol. 249, Iss. 1–2, pp. 47–61.

    Article  Google Scholar 

  8. Golubev, V.N., Chernyshev, I.V., Kotov, A.B., Sal’nikova, E.B., Gol’tsman, Yu.V., Bairova, E.D., and Yakovleva, S.Z., The Strel’tsovka uranium district: Isotopic geochronological (U–Pb, Rb–Sr, Sm–Nd) characterization of granitoids and their place in the formation history of uranium deposits, Geol. Ore Deposits, 2010, vol. 52, no. 6, pp. 496–513.

    Article  Google Scholar 

  9. Gordienko, I.V., Metelkin, D.V., and Vetluzhskikh, L.I., The structure of the Mongol–Okhotsk Fold Belt and the problem of recognition of the Amur microcontinent, Russ. Geol. Geophys., 2019, vol. 60, no. 3, pp. 267–286.

    Article  Google Scholar 

  10. Gou, J., Sun, D.Y., Ren, Y.S., Liu, Y.J., Zhang, S.Y., Fu, C.L., Wang, T.H., Wu, P.F., and Liu, X.M., Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence, J. Asian Earth Sci., 2013, vol. 67–68, pp. 114–137.

    Article  Google Scholar 

  11. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., Glitter: data reduction software for laser ablation ICP-MS, in LA-ICP-MS in the Earth Sciences. Current Practices and Outstanding Issues, Sylvester, P., Ed., Miner. Assoc. Canada Short Course Ser., 2008, vol. 40, pp. 308–314.

    Google Scholar 

  12. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or log data, J. Sediment. Petrol., 1988, vol. 58, no. 5, pp. 820–829.

    Google Scholar 

  13. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.

    Article  Google Scholar 

  14. Khubanov, V.B., Buyantuev, M.D., and Tsygankov, A.A., U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikala by sector-field mass spectrometry with laser sampling: Technique and comparison with SHRIMP, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 241–258.

    Article  Google Scholar 

  15. Kossovskaya, A.G. and Tuchkova, M.I., Problem of the mineralogical–petrochemical classication and genesis of sandy rocks, Lithol. Miner. Resour., 1988, vol. 23, no. 2, pp. 25–38.

    Google Scholar 

  16. Kozlov, S.A., Bogach, G.I., Tombasov, I.A., Potemkina, L.V., and Pinaeva, T.A., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000. Seriya Aldano-Zabaikal’skaya. List N-50 (Sretensk). Tret’e pokolenie (The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Aldan-Transbaikalia. Sheet N-50 (Sretensk)), Rudenko, V.E. and Starchenko, V.V., Eds., St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., 2010 [in Russian].

  17. Kurilenko, A.V., Kotlyar, G.V., Kul’kov, N.P., Raitina, N.I., Yadrishchenskaya, N.G., Starukhina, L.P., Markovich, E.M., Okuneva, T.M., Dol’nik, T.A., Popeko, L.I., Belyaeva, G.V., Byakov, A.S., Bashurova, N.F., Timokhin, A.V., Korovnikov, I.V., Mogucheva, N.K., Izokh, N.G., Anisimova, S.A., Klets, T.V., Ivanova, R.M., and Stukalina, G.A., Atlas fauny i flory paleozoya-mezozoya Zabaikal’ya (Atlas of Paleozoic–Mesozoic Fauna and Flora of Transbaikalian Region), Novosibirsk: Nauka, 2002 [in Russian].

  18. Li, Z.Z., Qin, K.Z., Li, G.M., Jin, L.Y., and Song, G.X., Neoproterozoic and Early Paleozoic magmatic records from the Chalukou ore district, northern Great Xing’an Range, NE China: implications for tectonic evolution and Mesozoic Mo mineralization, J. Asian Earth Sci., 2018, vol. 165, pp. 96–113.

    Article  Google Scholar 

  19. Liu, H., Li, Y., Wan, Z., and Lai, Ch.-K., Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: insights from magmatic and sedimentary record, Gondwana Res., 2020, vol. 88, pp. 185–200.

    Article  Google Scholar 

  20. Ludwig, K.R., Isoplot 3.6. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2008, no. 4, pp. 1–77.

  21. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  22. McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., Geochemical approaches to sedimentation, provenance, and tectonics, Spec. Pap.—Geol. Soc. Am., 1993, vol. 284, pp. 21–40.

    Google Scholar 

  23. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., The Central Asian Fold Belt: Geodynamic evolution and formation history, Geotektonika, 1993, no. 6, pp. 3–33.

  24. Ozerskii, A.F. and Vinnichenko, E.L., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Seriya Priargunskaya. List M-50-VI (Bol. Zerentui) (The 1 : 200 000 State Geological Map of the Russian Federation. Ser. Cis-Argun. Sheet M-50-VI (Bol. Zerentui)), Moscow: MF Vseross. Nauchno-Issled. Geol. Inst., 2015 [in Russian].

  25. Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., Bodarch, G., Belichenko, V.G., Bulgatov, A.N., Dril’, S.I., Kirillova, G.L., Kuzmin, M.I., Nokleberg, U., Prokopiev, A.V., Timofeev, V.F., Tomurtogoo, O., and Yan, H., The model of the formation of the orogenic belts of Central and Northern-Eastern Asia, Russ. J. Pac. Geol., 2003, vol. 22, no. 6, pp. 7–41.

    Google Scholar 

  26. Powerman, V.I., Buyantuev, M.D., and Ivanov, A.V., A review of detrital zircon data treatment, and launch of a new tool ‘Dezirteer’ along with the suggested universal workflow, Chem. Geol., 2021, vol. 583, 120437.

    Article  Google Scholar 

  27. Resheniya IV Mezhvedomstvennogo regional’nogo stratigraficheskogo soveshchaniya po dokembriyu i fanerozoyu yuga Dal’nego Vostoka i Vostochnogo Zabaikal’ya. Komplekt skhem (Resolutions of the IV Interdepartmental Regional Stratigraphic Meeting on the Precambrian and Phanerozoic of the Southern Far East and Eastern Transbaikalian Region), Khabarovsk: KhGGGP, 1994 [in Russian].

  28. Shivokhin, E.A., Ozerskii, A.F., Kurilenko, A.V., Raitina, N.I., and Karasev, V.V., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000. Seriya Aldano-Zabaikal’skaya. List M-50 (Borzya). Tret’e pokolenie (The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Aldan-Transbaikalia. Sheet M-50 (Borzya)), Starchenko, V.V., Ed., St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., 2010 [in Russian].

  29. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., Plesovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, pp. 1–35.

    Article  Google Scholar 

  30. Smirnova, Yu.N. and Dril’, S.I., Geochemistry of Vendian (?) metasedimentary rocks of the Byrka series of the Argun superterrane, Geochem. Int., 2022, vol. 60, no. 5, pp. 450–467.

    Article  Google Scholar 

  31. Smirnova, Yu.N. and Sorokin, A.A., Age and depositional settings of the Ordovician Chalovskaya Group in the Argun Massif, eastern part of the Central Asian Fold Belt, Stratigr. Geol. Correl., 2019, vol. 27, no. 3, pp. 277–296.

    Article  Google Scholar 

  32. Smirnova, Yu.N., Sorokin, A.A., Popeko, L.I., and Smirnov, Yu.V., Geochemistry of paleozoic terrigenous sediments from the Oldoi terrane, eastern Central Asian orogenic belt as an indicator of geodynamic conditions during deposition, Geochem. Int., 2013, vol. 51, pp. 306–325.

    Article  Google Scholar 

  33. Smirnova, Yu.N., Sorokin, A.A., and Popeko, L.I., Geochemical features, depositional settings, and provenances of Lower Paleozoic rocks in the Mamyn terrane, Central Asian Fold Belt, Lithol. Miner. Resour., 2016, vol. 51, no. 6, pp. 500–517.

    Article  Google Scholar 

  34. Smirnova, Yu.N., Sorokin, A.A., Popeko, L.I., Kotov, A.B., and Kovach, V.P., Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs, eastern Central Asian fold belt, Geochem. Int., 2017, no. 2, pp. 163–183.

  35. Smirnova, Yu.N., Ovchinnikov, R.O., Smirnov, Yu.V., and Dril’, S.I., Sources of sediment clasts and depositional environment of sedimentary rocks of the Daur Series of the Argun continental massif, Russ. J. Pac. Geol., 2022, vol. 16, no. 1, pp. 11–28.

    Article  Google Scholar 

  36. Sorokin, A.A. and Kudryashov, N.M., The first U–Pb geochronological and geochemical data on Late Vendian and Early Paleozoic acid volcanic rocks of the Mamyn Terrane (Central Asian Fold Belt), Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1237–1242.

    Article  Google Scholar 

  37. Sorokin, A.A., Kotov, A.B., Kudryashov, N.M., and Kovach, V.P., First evidence of Ediacaran magmatism in the geological history of the Mamyn Terrane of the Central Asian fold belt, Russ. J. Pac. Geol., 2015, vol. 9, pp. 399–410.

    Article  Google Scholar 

  38. Sun, L.X., Ren, B.F., Zhao, F.Q., Ji, S.P., and Geng, J.Z., Late Paleoproterozoic magmatic records in the Erguna massif: evidences from the zircon U–Pb dating of granitic gneisses, Geol. Bull. China, 2013, vol. 32, pp. 341–352.

    Google Scholar 

  39. Tang, J., Xu, W.L., Wang, F., Wang, W., Xu, M.J., and Zhang, Y.H., Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent, Precambrian Res., 2013, vol. 224, pp. 597–611.

    Article  Google Scholar 

  40. Taylor, S.R. and MacLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell Sci., 1985.

    Google Scholar 

  41. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithochemistry), St. Petersburg: Nauka, 2000 [in Russian].

  42. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., and Spiegel, W., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses, Geostand. Newsl., 1995, vol. 19, no. 1, pp. 1–23.

    Article  Google Scholar 

  43. Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., and Jahn, B.M., Geochronology of the Phanerozoic granitoids in northeastern China, J. Asian Earth Sci., 2011, vol. 41, no. 1, pp. 1–30.

    Article  Google Scholar 

  44. Yang, H., Liu, Y., Zheng, J., Liang, Z., Wang, X., Tang, X., and Su, Y., Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China, Geol. Bull. China, 2017, vol. 36, no. 2–3, pp. 342–356.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to the reviewers A.B. Kotov, V.P. Kovach, and S.I. Dril for valuable advice and criticism. We also thank our colleagues from the centers of collective use Amur Center of Mineralogical–Geochemical Studies of the IGNM FEB RAS (E.N. Voropaeva, O.G. Medvedeva, V.I. Rozhdestvina, A.S. Segreneva, E.S. Sapozhnik, and E.V. Ushakova), Isotopic–Geochemical Studies of the IGC SB RAS (O.V. Zarubina, N.V. Bryanskii, T.N. Galkina), and Geospektr of the GIN SB RAS (Uland-Ude) for analytical investigations.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-05-00195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Reviewers S.I. Dril, V.P. Kovach, and A.B. Kotov

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, Y.N., Kurilenkov, A.V. & Khubanov, V.B. Composition and Age of Rocks of the Provenance Areas for the Lower–Middle Cambrian (?) Terrigenous Sediments of the Ernichnaya Formation of the Argun Massif, Eastern Part of the Central Asian Foldbelt. Stratigr. Geol. Correl. 31, 443–458 (2023). https://doi.org/10.1134/S0869593823050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593823050076

Keywords:

Navigation