Skip to main content
Log in

Climatic Fluctuations and Sedimentation Conditions of the Turonian–Coniacian Sediments of the Northwest Caucasus

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The results of integrated study of the Turonian–Coniacian sediments from the Abinsky district (Northwest Caucasus), which are represented by a rhythmic terrigenous-carbonate sequence, are discussed. The use of microfacial, X-ray diffraction, isotope, and micropaleontological analyses allowed us to reveal important changes in abiotic and biotic evolution during this interval. The peculiarities of carbonate sedimentation, as well as changes in the composition of foraminiferal assemblages, helped to establish fluctuations in the relative sea level, whereas isotopic studies assisted in defining climatic fluctuations. During the periods of accumulation of carbonate and clayey material, the area was occupied by a relatively deep-water open-sea basin with normal salinity. In the background of high temperatures, cooling pulses are also recorded within the studied interval. The position of the Turonian–Coniacian boundary in the section is revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Plate II.
Plate III.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Afanas’ev, S.L., Putevoditel’ ekskursii 10-i Mezhdunarodnoi shkoly morskoi geologii. Verkhnemelovaya-datskaya flishevaya formatsiya Severo-Zapadnogo Kavkaza (Guide of Excursions of the 10th International School of Marine Geology (the Upper Cretaceous–Danish Flysch Formation of North Western Caucasus)), Moscow: Inst. Okeanol., 1992 [in Russian].

  2. Afanasenkov, A.P., Nikishin, A.M., and Obukhov, A.N., Geologicheskoe stroenie i uglevodorodnyi potentsial Vostochno-Chernomorskogo regiona (Geological Structure and Hydrocarbon Potential of the East Black Sea Region), Moscow: Nauchn. Mir, 2007.

  3. Anderson, T.F. and Arthur, M.A., Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Stable Isotopes in Sedimentary Geology. Soc. Econ. Paleontologists Mineralogists, Short Course 10. Sect.1.1–1.151, 1983.

  4. Bailey, H.W., A Foraminiferal Biostratigraphy of the Lower Senonian of Southern England, Univ. Plymouth Res. Theses, 1978.

    Google Scholar 

  5. Baturin, G.N., Fosfority na dne okeanov (Phosphorites on the Ocean Floor), Moscow: Nauka, 1978 [in Russian].

  6. Beniamovsky, V.N., Infrazonal biostratigraphy of the Upper Cretaceous in the East European province based on benthic foraminifers, Part 1: Cenomanian–Coniacian, Stratigr. Geol. Correl., 2008, vol. 16, no. 3, pp. 257-266.

    Article  Google Scholar 

  7. Bice, K.L., Huber, B.T., and Norris, R.D., Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511, Paleoceanography, 2003, vol. 18, pp. 91–97.

    Article  Google Scholar 

  8. Bornemann, A., Norris, R.D., Friedrich, O., Beckmann, B., Schouten, S., Damsté, J.S., Vogel, J., Hofmann, P., and Wagner, T., Isotopic evidence for glaciations during the Cretaceous supergreenhouse, Science, 2008, vol. 319, pp. 189–192.

    Article  Google Scholar 

  9. Caron, M., Cretaceous planktonic foraminifera, in Plankton Stratigraphy, Cambridge: Cambridge Univ. Press, 1985, pp. 17–86.

    Google Scholar 

  10. Caron, M. and Homewood, P., Evolution of early planktic foraminifers, Mar. Micropaleontol., 1983, vol. 7, pp. 453–462.

    Article  Google Scholar 

  11. Coccioni, R. and Premoli Silva, I., Revised upper Albian–Maastrichtian planktonic foraminiferal biostratigraphy and magnetostratigraphy of the classical Tethyan Gubbio section (Italy), Newsl. Stratigr., 2015, vol. 48, no. 1, pp. 47–90.

    Article  Google Scholar 

  12. Craig, H. and Gordon, L.I., Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, in Stable Isotopes in Oceanographic Studies and Paleotemperatures, Pisa: Consiglio Nazionalc Delle Ricerche. Laboratorio di Geologia Nucleare, 1965, pp. 1–22.

    Google Scholar 

  13. Drits, V.A. and Kossovskaya, A.G., Clay minerals: Micas, chlorites, in Tr. GIN RAN. Vyp. 465 (Trans. Geol. Inst. Russ. Acad. Sci. Vol. 465), Moscow: Nauka, 1991 [in Russian].

  14. Dubicka, Z. and Peryt, D., Foraminifers and stable isotope record of the Dubivtsi chalk (upper Turonian, West Ukraine): Palaeoenvironmental implications, Geol. Quart., 2012, vol. 56, pp. 199–214.

    Google Scholar 

  15. Dunham, R.J., Classification of carbonate rocks according to depositional texture, in Classification of Carbonate Rocks. Mem. Am. Assoc. Petrol. Geol., 1962, vol. 1, pp. 108–121.

    Google Scholar 

  16. Epstein, S. and Mayeda, T., Variations of 18O content of waters from natural sources, Geochim. Cosmochim. Acta, 1953, vol. 4, no. 5, pp. 213–224.

    Article  Google Scholar 

  17. Epstein, S., Buchsbaum, R., Lowensta, H.A., and Urey, H.C., Revised carbonate-water isotopic temperature scale, Geology, 1953, vol. 64, no. 11.

  18. Falzoni, F., Petrizzo, M.R., MacLeod, K.G., and Huber, B.T., Santonian-Campanian planktonic foraminifera from Tanzania, Shatsky Rise, and Exmouth Plateau: Species depth ecology and paleoceanographic inferences, Mar. Micropaleontol., 2013, vol. 103, pp. 15–29.

    Article  Google Scholar 

  19. Falzoni, F., Petrizzo, M.R., Clarke, L.C., MacLeod, K.G., and Jenkyns, H.J., Long-term Late Cretaceous carbon- and oxygen-isotope trends and planktonic foraminiferal turnover: A new record from the southern mid-latitudes, Geology, 2016, vol. 128, pp. 1725–1735. https://doi.org/10.1130/B31399.1

    Article  Google Scholar 

  20. Flügel, E., Microfacies of Carbonate Rocks. Analysis, Interpretation and Application, 2nd ed., Berlin, Heidelberg: Springer-Verlag, 2010.

    Google Scholar 

  21. Faure, G., Principles of Isotope Geology, New York : John Wiley, 1986.

    Google Scholar 

  22. Fourel, F., Martineau, F., Tóth, E., Görögb, A., Escarguela, G., and Lécuyera, C., Carbon and oxygen isotope variability among foraminifera and ostracod carbonated “shells”, Ann. Univ. Mariae Curie. Skłodowska Lublin. Polonia. Sectio AAA, 2015, vol. LXX, pp. 133–156.

    Google Scholar 

  23. Frolov V.T. Geneticheskaya tipizatsiya morskikh otlozhenii (Genetic Typification of Marine Sediments), Moscow: Mosk. Gos. Univ., 1984 [in Russian].

  24. Frolov, V.T., Litologiya. Kn. 2. Uchebnoe posobie (Lithology. Book 2. Textbook), Moscow: Mosk. Gos. Univ., 1993 [in Russian].

  25. Frolov, V.T., Litologiya. Kn. 3. Uchebnoe posobie (Lithology. Book 3. Textbook), Moscow: Mosk. Gos. Univ., 1995 [in Russian].

  26. Gabdullin, R.R., Ritmichnost’ verkhnemelovykh otlozhenii Russkoi plity, Severo-Zapadnogo Kavkaza i Yugo-Zapadnogo Kryma (stroenie, klassifikatsiya, modeli formirovaniya) (Rhythmicity in the Upper Cretaceous Sediments of the Russian Plate, Northwestern Caucasus, and Southwestern Crimea (Structure, Classification, and Formation Models)), Moscow: Mosk. Gos. Univ., 2002 [in Russian].

  27. Gale, A.S., Turonian correlation and sequence stratigraphy of the Chalk in southern England, Geol. Soc. Spec. Publ., 1996, vol. 103, pp. 177–195.

    Article  Google Scholar 

  28. Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow: Nedra, 1968 [in Russian].

  29. Gavrilov, Yu.O., Shcherbinina, E.A., Golovanova, O.V., and Pokrovskii, B.G., Late Senomanian anoxic event (OAE2) in the Aimaki section in Mountainous Dagestan, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2009, vol. 84, no. 2, pp. 94–108.

    Google Scholar 

  30. Gorbachik, T.N. and Kopaevich, L.F., Influence of the Cretaceous events on the evolution of globigerinids, in Geologicheskaya istoriya Arktiki v mezozoe i kainozoe (Geological History of the Arctic in the Mesozoic and Cenozoic), St. Petersburg: VNII Okeangeologiya. 1992, pp. 17–29

  31. Grossman, E.L., Oxygen isotope stratigraphy, in The Geologic Time Scale, Elsevier, 2012, vol. 1, pp. 181–206.

    Google Scholar 

  32. Guzhikova, A.A., Kalyakin, E.A., Fomin, V.A., Sel’tser, V.B., Il’inskii, E.I., Mirantsev, G.V., and Proshina, P.A., Turonian–Coniacian deposits of the Kamennyi Brod-1 section (Southern Ulyanovsk–Saratov Trough), Stratigr. Geol. Correl., 2019, vol. 27, no. 7, pp. 804–839.

    Article  Google Scholar 

  33. Hart, M.B., A water depth model for the evolution of the planktonic Foraminiferida, Nature, 1980, vol. 286, pp. 252–254.

    Article  Google Scholar 

  34. Hart, M.B., The evolution and biodiversity of Cretaceous Foraminiferida, Geobios, 1999, vol. 32, pp. 247–255.

    Article  Google Scholar 

  35. Hart, M.B. and Bailey, H.W., The distribution of planktonic Foraminiferida in the mid-Cretaceous of NW Europe, Aspekte der Kreide Europas, 1979, vol. 6, pp. 527–542.

    Google Scholar 

  36. Hinrichs, K.-U. and Boetius, A., The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry, in Ocean Margin Systems, Heidelberg: Springer, 2002, pp. 457–477.

    Google Scholar 

  37. Huber, B.T. and O’Brien, C.L., Cretaceous climate, in Encyclopedia of Geology (2nd ed.), Elsevier Inc., 2020, pp. 1–7.

    Google Scholar 

  38. Huber, B.T., Hodell, D.A., and Hamilton, C.P., Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients, Geology, 1995, vol. 107, pp. 1164–1191.

    Google Scholar 

  39. Huber, B.T., MacLeod, K.G., Watkins, D.K., and Coffin, M.F., The rise and fall of the Cretaceous Hot Greenhouse climate, Global Planet. Change, 2018, vol. 167, pp. 1–23.

    Article  Google Scholar 

  40. Jarvis, I., Gale, A.S., Jenkyns, H.C., and Pearce, M., Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma), Geol. Mag., 2006, vol. 143, pp. 561–608.

    Article  Google Scholar 

  41. Jenkyns, H.C., Gale, A.S., and Corfield, R.M., Carbon and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance, Geol. Mag., 1994, vol. 131, pp. 1–34.

    Article  Google Scholar 

  42. Keller, B.M., Upper Cretaceous deposits of Western Caucasus, in Tr. Inst. geol. nauk. Geol. ser. (Trans. Inst. Geol. Sci. Geol. Ser.), Moscow: Izd. Akad. Nauk SSSR, 1947, vol. 48. no. 15.

  43. Kim, S.T. and O’Neil, J., Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 16, pp. 3461–3475.

    Article  Google Scholar 

  44. Kopaevich, L.F., Zonal scheme for the Upper Cretaceous Crimea–Caucasus based on globotruncanids, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2010, vol. 85, no. 5, pp. 40–52.

    Google Scholar 

  45. Kopaevich, L.F. and Alekseev, A.S., Nina Ivanovna Maslakova and evolution of Upper Cretaceous zonation on planktonic foraminifera for southern Europe, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2019, vol. 94, no. 4, pp. 3–12.

    Google Scholar 

  46. Kopaevich, L.F. and Vishnevskaya, V., Cenomanian–Campanian (Late Cretaceous) planktonic assemblages of the Crimea-Caucasus area: Palaeoceanography, palaeoclimate and sea level changes, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016, vol. 441, pp. 493–515.

    Article  Google Scholar 

  47. Kopaevich, L.F., Bragin, N.Yu., and Bragina, L.G., New data on the planktonic foraminifers from the Yunusdag Formation (Coniacian–Santonian) in the Kelevudag Section, northeastern Azerbaijan, Stratigr. Geol. Correl., 2017, vol. 25, no. 6, pp. 627–637.

    Article  Google Scholar 

  48. Koplen, T.B. and Ramendik, G.I., The IUPAC guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data, Geokhimiya, 1998, no. 3, pp. 334–336.

  49. Korsakov, S.G., Semenukha, I.N., Beluzhenko, E.V., Chernykh, V.I., Tokarev, V.N., Derkacheva, M.G., and Tuzikov, G.R., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Izd. vtoroe. Ser. Kavkazskaya. List L-37-XXVII (Krasnodar). Ob’’yasnitel’naya zapiska (The 1 : 200 000 State Geological Map of the Russian Federation (2nd ed.). Ser. Caucasian. Sheet L-37-XXVII (Krasnodar), Moscow: MF Vseross. Nauchno-Issled. Geol. Inst., 2013 [in Russian].

  50. Krasilov, V.A., Nereshennye problemy teorii evolyutsii (Unsolved Problems of the Evolutionary Theory), Vladivostok: Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1986 [in Russian].

  51. Leckie, R.M., Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages, Micropaleontology, 1987, vol. 33, pp. 164–176.

    Article  Google Scholar 

  52. Leckie, R.M., A paleoceanographic model for the early evolutionary history of planktonic Foraminifera, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1989, vol. 73, pp. 107–138.

    Article  Google Scholar 

  53. Maslakova, N.I., Globotruncanides and their stratigraphic significance for Upper Cretaceous deposits of the Crimea, Caucasus, and Soviet Carpathians, Doctoral (Geol.-Mineral.) Dissertation, Moscow: Mosk. Gos. Univ., 1967.

  54. Maslakova, N.I., Development and change of planktonic foraminifers at the Early–Late Cretaceous boundary, in Stratigrafiya i paleontologiya mezokainozoiskikh otlozhenii yuga SSSR i Sredizemnomor’ya. Geologiya i poleznye iskopaemye stran Azii, Afriki i Latinskoi Ameriki. Vyp. 3 (Stratigraphy and Paleontology of Meso-Cenozoic Deposits of the South of the USSR and the Mediterranean. Geology and Mineral Resources of the Countries of Asia, Africa, and Latin America. Vol. 3), Moscow: Unst. Druzhby Narodov im. Patrisa Lumumby, 1978, pp. 115–120.

  55. Miller, K.G., Wright, J.D., and Browning, J.V., Visions of ice sheets in a Green House World, Mar. Geol., 2005, vol. 217, pp. 215–231.

    Article  Google Scholar 

  56. Murray, J.W., A method of determining proximity of marginal seas to an ocean, Mar. Geol., 1976, vol. 22, pp. 103–119.

    Article  Google Scholar 

  57. Naidin, D.P. and Kopaevich, L.F., Vnutriformatsionnye pereryvy verkhnego mela Mangyshlaka (Intraformational Hiatuses in the Upper Cretaceous of Mangyshlak), Moscow: Mosk. Gos. Univ., 1988 [in Russian].

  58. O’Neil, J.R., Adami, L.H., and Epstein, S., Revised value for the 18O fractionation between CO2 and H2O at 25°C, J. Res. U.S. Geol. Surv., 1975, vol. 3, pp. 623–624.

    Google Scholar 

  59. Netreba, D.A., Geological structure and formation conditions of Upper Cretaceous deposits of northwestern Caucasus, MSc Dissertation, Moscow: Mosk. Gos. Univ., 2020.

  60. Norris, R.D., Bice, K.L., Magno, E.A., and Wilson, P.A., Jiggling the tropical thermostat in the Cretaceous hothouse, Geology, 2002, vol. 30, pp. 299–302.

    Article  Google Scholar 

  61. Ogg, J.G., Agtenberg, F.P., and Gradstein, F.M., The Cretaceous period, in A Geologic Time Scale 2004, Cambridge: Cambridge Univ. Press, 2004, pp. 344–383.

    Google Scholar 

  62. Pervushov, E. M., Ryabov, I. P., Guzhikov, A.Yu., Vishnevskaya, V.S., Kopaevich, L.F., Guzhikova, A.A., Kalyakin, E.A., Fomin, V.A., Sel’tser, V.B., Il’inskii, E.I., Mirantsev, G.V., and Proshina, P.A., Turonian–Coniacian deposits of the Kamennyi Brod-1 section (Southern Ulyanovsk–Saratov Trough), Stratigr. Geol. Correl., 2019, vol. 27, no. 7, pp. 804–839.

    Article  Google Scholar 

  63. Petrizzo, M.R., Upper Turonian–Lower Campanian planktonic foraminifera from southern mid-high latitudes (Exmouth Plateau, NW Australia): Biostratigraphy and taxonomic notes, Cretaceous Res., 2000, vol. 21, pp. 479–505.

    Article  Google Scholar 

  64. Petrizzo, M.R., Palaeoceanographic and palaeoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau (ODP Sites 762 and 763, eastern Indian Ocean), Mar. Micropaleontol., 2002, vol. 45, pp. 117–150.

    Article  Google Scholar 

  65. Premoli Silva, I. and Sliter, W.V., Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Botaccione section, Gubbio, Italy, Palaeontogr. Ital., 1995, vol. 82, pp. 1–89.

    Google Scholar 

  66. Premoli Silva, I. and Sliter, W.V., Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution, in The Evolution of Cretaceous Ocean—Climatic System, Barrera, E. and Jonson, C.C., Eds., Spec. Pap.—Geol. Soc. Am., 1999, vol. 332, pp. 301–328.

    Google Scholar 

  67. Price, G.D. and Hart, M.B., Isotopic evidence for Early to mid-Cretaceous ocean temperature variability, Mar. Micropaleontol., 2002, vol. 46, pp. 45–58.

    Article  Google Scholar 

  68. Robaszynski, F. and Caron, M., Foraminiferes planctoniques du Cretace: Commentaire dela zonation Europe-Mediterrane, Geol. Soc. Am. Bull., 1995, vol. 166, pp. 681–692.

    Google Scholar 

  69. Shackleton, N.J. and Kennett, J.P., Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP Sites 277, 279, and 280, in Init. Rep. Deep Sea Drilling Project 29, Washington, DC: U.S. Govern. Print. Office, 1975, pp. 743–755.

    Google Scholar 

  70. Stoll, H.M. and Schrag, D.P., High resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a Green House Planet? Geology, 2000, vol. 112, pp. 308–319.

    Google Scholar 

  71. Teis, R.V. and Naidin, D.P., Paleotermometriya i izotopnyi sostav kisloroda organogennykh karbonatov (Paleothermometry and Oxygen Isotope Composition of Organogenic Carbonates), Moscow: Nauka, 1973 [in Russian].

  72. Tur, N.A., Smirnov, J.P., and Huber, B., Late Albian–Coniacian planktic foraminifera and biostratigraphy of the northeastern Caucasus, Cretaceous Res., 2001, vol. 22, pp. 719–734.

    Article  Google Scholar 

  73. Vishnevskaya, V.S., The first record of calcareous dinoflagellate cysts from the Upper Cretaceous of the Volga River Region, Dokl. Earth Sci., 2016, vol. 466, no. 1, pp. 12–15.

    Google Scholar 

  74. Vishnevskaya, V.S. and Kopaevich, L.F., Microfossil assemblages as key to reconstruct sea-level fluctuations, cooling episodes and palaeogeography: the Albian to Maastrichtian of Boreal and Peri-Tethyan Russia, in Cretaceous Climate Events and Short-Term Sea-Level Changes, Wagreich, M., Hart, M.B., Sames, B., and Yilmaz, I.O., Eds., Spec. Publ.—Geol. Soc. London, 2020, vol. 498, pp. 165–187.

    Google Scholar 

  75. Vishnevskaya, V.S., Kopaevich, L.F., Beniamovsky, V.N., and Ovechkina, M.N., The correlation of the Upper Cretaceous zonal schemes of the Eastern European Platform based on foraminifera, radiolaria, and nannoplankton, Moscow Univ. Geol. Bull., 2018, vol. 73, no. 2, pp. 131–140.

    Article  Google Scholar 

  76. Voigt, S. and Hilbrecht, H., Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1997, vol. 134, pp. 39–60.

    Article  Google Scholar 

  77. Voigt, S., Flögel, S., and Gale, A.S., Mid-latitude shelf seas in the Cenomanian-Turonian greenhouse world: temperature evolution and North Atlantic circulation, Paleoceanography, 2004, vol. 19, pp. 1–17.

    Article  Google Scholar 

  78. Walaszczyk, I. and Peryt, D., Inoceramid-foraminiferal biostratigraphy of the Turonian through Santonian deposits of the Middle Vistula Section, Central Poland, Zbl. Geol. Paläont., 1998, vol. I, pp. 1501–1513.

    Google Scholar 

  79. Walaszczyk, I. and Wood, C.J., Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder quarry, Lower Saxony, Germany, and the Słupia Nadbrzeżna section, central Poland, Acta Geol. Polon., 1999, vol. 48, pp. 395–434.

    Google Scholar 

  80. Walaszczyk, I., Wood, C.J., Lees, J.A., Peryt, D., Voigt, S., and Wiese, F., The Salzgitter-Salder Quarry (Lower Saxony, Germany) and Słupia Nadbrzeżna river cliff section (Central Poland): a proposed candidate composite Global Boundary Stratotype Section and Point for the base of the Coniacian Stage (Upper Cretaceous), Acta Geol. Polon., 2010, vol. 60, no. 4, pp. 445–477.

    Google Scholar 

  81. Walaszczyk, I., Čech, S., Crampton, J.S., Dubicka, Z., Ifrim, C., Jarvis, J., Kennedy, W.J., Lees, J.A., Lodowski, D., Pearce, M., Peryt, D., Sageman, B.B., and Schiøler, P., Todes, J., Uličný, D., Voigt, S., and Wiese, F., The Global Boundary Stratotype Section and Point (GSSP) for the base of the Coniacian Stage (Salzgitter-Salder, Germany) and its auxiliary sections (Słupia Nadbrzeżna, central Poland; Střeleč, Czech Republic; and El Rosario, NE Mexico), Communication of IUGS Geol. Standards, 2021, pp. 1–40.

  82. Wiese, F., Stable isotope data (δ13C, δ18O) from the Middle and Upper Turonian (Upper Creataceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde and Salzgitter-Salder), Newsl. Stratigr., 1999, vol. 37, pp. 37–62.

    Article  Google Scholar 

  83. Wiese, F. and Voigt, S., Late Turonian (Cretaceous) climate cooling in Europe: Faunal response and possible cause, Geobios, 2002, vol. 35, no. 1, pp. 65–77.

    Article  Google Scholar 

  84. Wilson, P.A., Norris, R.D., and Cooper, M.J., Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 2002, vol. 30, pp. 607–610.

    Article  Google Scholar 

  85. Wood, C.J., Walaszczyk, I., Mortimore, R.N., and Woods, M.A., New observations on the inoceramid biostratigraphy of the higher part of the Upper Turonian and the Turonian–Coniacian boundary transition in Poland, Germany and the UK, Acta Geol. Polon., 2004, vol. 54, no. 4, pp. 541–549.

    Google Scholar 

  86. Zakharov, Yu., Kakabadze, M.V., Sharikadze, M.Z., Smyshlyaeva, O.P., Sobolev, E.S., and Safronov, P.P., The stable O- and C-isotope record of fossils from the upper Barremian–lower Albian of the Caucasus—Palaeoenvironmental implications, in Advance in Cretaceous Palaeontology and Stratigraphy. Christopher John Wood Memorial Vol. Cretaceous Res., 2018, vol. 87, pp. 55–73.

    Article  Google Scholar 

  87. Zakharov, Yu.D., Seltser, V.B., Kakabadze, M.V., Smyshlyaeva, O.P., and Safronov, P.P., Oxygen–carbon isotope composition of Middle Jurassic–Cretaceous molluscs from the Saratov–Samara Volga region and main climate trends in the Russian Platform–Caucasus, in Cretaceous Climate Events and Short-Term Sea-Level Changes, Wagreich, M., Hart, M.B., Sames, B., and Yilmaz, I.O., Eds., Spec. Publ.—Geol. Soc. London, 2020, vol. 498, pp. 101–127.

    Google Scholar 

  88. Zhang, Q.L., Chang, T.L., and Li, W.J., A calibrated measurement of the atomic-weight of carbon, Chin. Sci. Bull., vol. 35, no. 4, pp. 290–296.

Download references

ACKNOWLEDGMENTS

We are grateful to A.M. Nikishin for the advice on applicable terminology and V.L. Kosorukov for the help in processing and interpreting the results of X-ray diffraction analysis (both are employed at the Faculty of Geology, Moscow State University, Moscow). We acknowledge the colleagues from the laboratory of local methods of material studies, Department of Petrology, Moscow State University, for the opportunity of cooperation and obtaining high-quality images of foraminifer shells using a scanning-electron microprobe. We also appreciate the constructive criticism from the reviewers, Yu.D. Zakharov and E.Yu. Baraboshkin, whose useful notes improved the initial manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-05-00495-a, 18-05-00503-a, and 19-05-00361-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yakovishina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Reviewers: E.Yu. Baraboshkin and Yu.D. Zakharov

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovishina, E.V., Bordunov, S.I., Kopaevich, L.F. et al. Climatic Fluctuations and Sedimentation Conditions of the Turonian–Coniacian Sediments of the Northwest Caucasus. Stratigr. Geol. Correl. 30, 147–166 (2022). https://doi.org/10.1134/S0869593822030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593822030066

Keywords:

Navigation