Skip to main content
Log in

Sedimentology and Stratigraphic Evolution of the Early Eocene Nammal Formation, Salt Range, Pakistan

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The Early Eocene succession of the Salt Range from base to top comprises the Nammal Formation, Sakesar Limestone and Chor Gali Formation. The Nammal Formation of Ypresian age is well exposed throughout the Salt Range. Detailed sedimentological and palaeontological analyses of the Nammal Formation were carried out, based on six stratigraphically important measured sections in the Salt Range. Lithologically, the formation is predominantly composed of interbedded nodular limestone, marl and shale. Wackestone, packstone, wackestone to packstone, dolomitic limestone and grainstone facies dominate the Nammal Formation in a fine-grained bioclastic matrix with abundant grains of larger benthic foraminifera. The diagnostic larger benthic foraminifera are recorded, which includes Nummulites mamillatus, Assilina spinosa, Assilina subspinosa, Assilina granulosa, Assilina laminosa, Discocyclina dispansa, Alveolina dolioliformis, Alveolina pasticillata, Alveolina globula, Lockhartia tipperi, and Lockhartia conditi. Stable carbon and oxygen isotopic signatures of the Nammal Formation designate shallow marine depositional environment. During Eocene a carbonate sequence developed in the Salt Range, lower boundary of which is marked as SB-II at the base of the Nammal Formation overlying the Palaeocene Patala Formation. The Nammal Formation presents the retrogradational facies suggesting the transgressive system tracts. The Sakesar Limestone shows agradational to progradational pattern of facies, which developed in highstand system tracts. The Chor Gali Formation possesses shallowing-upward trend by forming progradational shift of facies, and represents the falling stage system tracts. Early Eocene carbonate sequence is terminated by a regional sub-aerial unconformity SB-I marked between marine carbonate sequence of the Chor Gali Formation and the overlying non-marine clastic Miocene Kamlial Formation. Overall, the Nammal Formation presents shallow water neritic carbonate deposits containing larger benthic foraminifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Afghah, M. and Farhoudi, G., Boundary between Upper Cretaceous and Lower Paleocene in the Zagros Mountain Ranges of Southwestern Iran, Acta.Geol. Sin. (Engl.), 2012, vol. 86, no. 2, pp. 325–338.

    Article  Google Scholar 

  2. Afzal, J. and Butt, A.A., Lower Tertiary planktonic biostratigraphy of the Salt Range, Northern Pakistan, N.Jb. Geol. Palaont. Mh., 2000, vol. 12, pp. 721–747.

    Google Scholar 

  3. Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F., Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, Int. J. Earth Sci., 2005, vol. 94, no. 3, pp. 401–419.

    Article  Google Scholar 

  4. Akhtar, M. and Butt, A.A., Lower Tertiary biostratigraphy of the Kala Chitta Range, northern Pakistan, Rev. Paleobiol., 1999, vol. 18, no. 1, pp. 123–146.

    Google Scholar 

  5. Akhtar, M. and Butt, A.A., The Paleocene of the Kala Chitta Range, northern Pakisan, N.Jb. Geol. Palaont. Mh., 2001, vol. 1, pp. 43–55.

    Google Scholar 

  6. Al-Wosabi, M. and Al-Aydrus, A.A., Microfacies analysis and depositional environments of Tertiary carbonate s-equences in Socotra Island, Yemen, Türkiye Jeol.Bül., 2011, vol. 54, no. 12, pp. 57–80.

    Google Scholar 

  7. Baker, D.M., Lillie, R.J., Yeats, R.S., Johnson, G.D., Yousuf, M., and Zamin, A.S.H., Development of the Himalayan frontal thrust zone: Salt Range, Pakistan, Geology, 1988, vol. 16, no. 1, pp. 3–7.

    Article  Google Scholar 

  8. Barattolo, F., Bassi, D., and Romano, R., Upper Eocene larger foraminiferal–coralline algal facies from the Klokova Mountain (southern continental Greece), Facies, 2007, vol. 53, no. 3, pp. 361–375.

    Article  Google Scholar 

  9. Beavington-Penney, S.J. and Racey, A., Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis, Earth Sci. Rev., 2004, vol. 67, nos. 3–4, pp. 219–265.

    Article  Google Scholar 

  10. Boggs, S.J., Principles of Sedimentology and Stratigraphy, 4th ed., New Jersey: Pearson Prentice Hall, Upper Saddle River, 2006.

  11. Boustani, M. and Khawaja A.M., Microfacies studies of the Sakesar Limestone, Central Salt Range, Pakistan, Geol. Bull. Univ. Peshavar, 1997, vol. 30, pp. 131–142.

  12. Buxton, M.W.N. and Pedley, H.M., Short Paper: A standardized model for Tethyan Tertiary carbonate ramps, J. Geol. Soc., 1989, vol. 146, no. 5, pp. 746–748.

    Article  Google Scholar 

  13. Ćosović, V., Drobne, K., and Moro, A., Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula), Facies, 2004, vol. 50, no. 1, pp. 61–75.

    Article  Google Scholar 

  14. Davies, L.M. and Pinfold, E.S., The Eocene beds of the Punjab Salt Range, Geol. Surv.India, Mem., Palaeontol. Indica, New Ser., 1937, vol. 24.

    Google Scholar 

  15. Dunham, R.J., Classification of carbonate rocks according to depositional texture, AAPG Mem., 1962, vol. 1, pp. 108–121.

    Google Scholar 

  16. Fatmi, A.N., Lithostratigraphic units of the Kohat-Potwar Province, Indus Basin, Pakistan, Geol. Surv. Pakistan Mem., 1973, vol. 10.

    Google Scholar 

  17. Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed., Berlin, New York: Springer-Verlag, 2010.

    Book  Google Scholar 

  18. Friedman, G., The arid peritidal complex of Abu Dhabi: A historical perspective, Carbonates Evaporites, 1995, vol. 10, no. 1, pp. 2–7.

    Article  Google Scholar 

  19. Gaetani, M. and Garzanti, E., Multicyclic history of the northern India continental margin (northwestern Himalaya), AAPG Bull., 1991, vol. 75, no. 9, pp. 1427–1446.

    Google Scholar 

  20. Geel, T., Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2000, vol. 155, nos. 3–4, pp. 211–238.

    Article  Google Scholar 

  21. Ghazi, S., and Mountney, N.P., Facies and architectural element analysis of a meandering fluvial succession: The Permian Warchha Sandstone, Salt Range, Pakistan, Sediment. Geol., 2009, vol. 221, nos. 1–4, pp. 99–126.

    Article  Google Scholar 

  22. Ghazi, S., Butt, A.A., and Khan, K.A., Microfacies and foraminiferal assemblage of the Lower Eocene Nammal Formation, Nilawahan Gorge, Salt Range, Pakistan, Geol. Bull. Punjab Univ., 2004, vol. 39, pp. 75–85.

    Google Scholar 

  23. Ghazi, S., Butt, A.A., and Ashraf, M., Microfacies analysis and diagenesis of the Lower Eocene Sakesar Limestone, Nilawahan Gorge, Salt Range, Pakistan, J. Nepal Geol. Soc., 2006, vol. 33, pp. 23–32.

    Google Scholar 

  24. Ghazi, S., Sharif, S., Hanif, T., Ahmad, S., Aziz, T., and Riaz, M., Micropaleontological analysis of the Early Eocene Sakesar Limestone, Central Salt Range, Pakistan, Pakistan J. Sci., 2015, vol. 67, no. 2, pp. 150–158.

    Google Scholar 

  25. Gill, W.D., The genus Assilina in the Laki Series (Lower Eocene) of the Kohat-Potwar Basin, Northwest Pakistan, Contrib. Cushman Found. Foraminifer. Res., 1953, vol. 4, no. 2, pp. 76–86.

    Google Scholar 

  26. Grelaud, S., Sassi, W., de Lamotte, D.F., Jaswal, T., and Roure, F., Kinematics of eastern Salt Range and South Potwar Basin (Pakistan): A new scenario, Mar. Petrol. Geol., 2002, vol. 19, no. 9, pp. 1127–1139.

    Article  Google Scholar 

  27. Hanif, T., Sedimentology and stratigraphic evolution of the Early Eocene succession, Central Salt Range, Pakistan, M. Phil. Thesis (unpublished), Inst. Geol., Univ. Punjab, Lahore, Pakistan, 2013.

  28. Hottinger, L., Shallow benthic foraminifera at the Paleocene–Eocene boundary, Strata, 1998, vol. 9, pp. 61–64.

    Google Scholar 

  29. Hudson, J.D., Stable isotopes and limestone lithification, J. Geol. Soc. London, 1977, vol. 133, pp. 637–660.

    Article  Google Scholar 

  30. Hughes, N.C., Myrow, P.M., Ghazi, S., McKenzie, N.R., Stockli, D.F., and DiPietro, J.A., Cambrian geology of the Salt Range of Pakistan: Linking the Himalayan margin to the Indian craton, Geol. Soc. Am. Bull., 2019, vol. 131, nos. 7–8, pp. 1095–1114.

    Article  Google Scholar 

  31. Kaever, M., Über Assilina lacunata CIZANCOURT, aus dem Unter-Eozän, Afghanistans, Geol. Jb., 1964, vol. 82, pp. 131–142.

    Google Scholar 

  32. Nagarajan, R., Sial, A.N., Armstrong-Altrin, J.S., Madhavaraju, J., and Nagendra, R., Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima basin, Karnataka, southern India, Rev. Mex. Cienc. Geol., 2008, vol. 25, no. 2, pp. 225–235.

    Google Scholar 

  33. Najman, Y., The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins, Earth Sci. Rev., 2006, vol. 74, nos. 1–2, pp. 1–72.

    Google Scholar 

  34. Nichols, G., Sedimentology and Stratigraphy, Oxford, London: Blackwell, 2009.

    Google Scholar 

  35. Racey, A., A review of Eocene nummulite accumulations: structure, formation and reservoir potential, J. Petrol. Geol., 2001, vol. 24, no. 1, pp. 79–100.

    Article  Google Scholar 

  36. Rafi, R., Khursheed, S.H., and Mohsin, S.I., Microfaunal assemblage of the Sui Main Limestone from Sui Gas Field, Pakistan, J. Basic Appl. Sci., 2012, vol. 8, no. 1, pp. 85–90.

    Article  Google Scholar 

  37. Riaz, M., Pimentel, N., Ghazi, S., Zafar, T., Alam, A., and Ariser S., Lithostratigraphic analysis of the Eocene reservoir units of Meyal Area, Potwar Basin, Pakistan, Himal. Geol., 2018, vol. 39, no. 2, pp. 161–170.

    Google Scholar 

  38. Riaz, M., Pimentel, N., Zafar, T., and Ghazi, S., 2D seismic interpretation of Meyal Area, northern Potwar Deform Zone (NPDZ), Potwar Basin, Pakistan, Open Geosci., 2019, vol. 11, pp. 1–16.

    Article  Google Scholar 

  39. Sameeni, S.J. and Butt, A.A., Alveolinid biostratigraphy of the Salt Range succession, Northern Pakistan, Rev. Paléobiol., Genéve, 2004, vol. 23, no. 2, pp. 505–527.

  40. Sameeni, S.J., The Salt Range, in PaleoParks: The Protection and Conservation of Fossil Sites Worldwide, Univ. Bretagne Occidentale, Départment Sci. Terre, 2009, pp. 65–73.

  41. Scheibner, C. and Speijer, R.P., Late Paleocene–early Eocene Tethyan carbonate platform evolution—A response to long- and short-term paleoclimatic change, Earth Sci. Rev., 2008, vol. 90, nos. 3–4, pp. 71–102.

    Article  Google Scholar 

  42. Shinn, E.A. and Robbin, D.M., Mechanical and chemical compaction in fine-grained shallow-water limestones, J. Sediment. Res., 1983, vol. 53, no. 2, pp. 595–618.

    Google Scholar 

  43. Strasser, A., Védrine, S., and Stienne, N., Rate and synchronicity of environmental changes on a shallow carbonate platform (Late Oxfordian, Swiss Jura Mountains), Sedimentology, 2012, vol. 59, no. 1, pp. 185–211.

    Article  Google Scholar 

  44. Taheri, A., Vaziri-Moghaddam, H., and Seyrafian, A., Relationships between foraminiferal assemblages and depositional sequences in Jahrum Formation, Ardal area (Zagros Basin, SW Iran), Hist. Biol., 2008, vol. 20, no. 3, pp. 191–201.

    Article  Google Scholar 

  45. Vail, P.R., Mitchum, Jr., R.M., and Thompson III, S., Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap, in: Seismic Stratigraphy—Applications to Hydrocarbon Exploration, Payton, C.E., Ed., AAPG Mem., 1977, vol. 26, pp. 63–81.

    Google Scholar 

  46. Wardlaw, B.P., Martin, W.E., and Haydri, I.H., Stratigraphic analysis of Palaeocene and Lower Eocene rocks adjacent to the Potwar Plateau, Northern Pakistan, in Regional Studies of the Potwar Plateau Area, Northern Pakistan, Warwick, P.D., and Wardlaw, B.P., Eds., U.S. Geol. Surv. Bull., 2007, vol. 2078, pp. 1–18.

    Google Scholar 

  47. Zhang, Q., Willems, H., and Ding, L., Evolution of the Paleocene–Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China, Int. J. Earth Sci., 2013, vol. 102, pp. 1427–1445.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study benefited from the Pakistan University of the Punjab, Lahore Pakistan grant. The authors wish to express their thanks to Institute of Geology, University of the Punjab. This study benefited from suggestions given by Maurice Tucker, Aftab Ahmad Butt and Kaleem Akhtar Qureshi and their insights are greatly appreciated. The authors also thank Dr. E.V. Yakovishina (Moscow State University) and Dr. E.Yu. Zakrevskaya (Vernadsky State Geological Museum, Moscow) for reviewing the manuscript.

Reviewers A.S. Alekseev, E.V. Yakovishina, and E.Yu. Zakrevskaya

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid Ghazi, Sharif, S., Zafar, T. et al. Sedimentology and Stratigraphic Evolution of the Early Eocene Nammal Formation, Salt Range, Pakistan. Stratigr. Geol. Correl. 28, 745–764 (2020). https://doi.org/10.1134/S0869593820070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593820070047

Keywords:

Navigation