Skip to main content
Log in

Provenance of the Neoproterozoic and Upper Paleozoic Siliciclastic Complexes of the Eastern Taimyr: Petrographic, Geochemical, and Geochronological Data

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The results of petrographic, geochemical, and isotopic studies of the Neoproterozoic and Upper Paleozoic sandstones of the Eastern Taimyr complement the available data on their genesis and confirm their molassic origin. The sandstones and mudstones of the Neoproterozoic Stanovaya and Posadochnaya formations formed mostly from the erosion products of the magmatic and metamorphic complexes with ages of ~970–800 Ma and from older siliciclastic rocks. The Upper Paleozoic sandstones of the Byrranga, Sokolinaya, and Turuza formations are characterized by a somewhat lower degree of maturity. Most of them formed from erosion products of magmatic and metamorphic complexes with ages of ~500 and ~300 Ma, although sediments sourced from an older provenance were also encountered. The ages of the youngest detrital zircon grains from the Upper Paleozoic sandstones are close to the depositional ages in some cases and differ by more than 100 m.y. in other cases. This suggests that one should be cautious about using the maximum depositional ages for establishing the tectonic setting of sedimentary basin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Beranek, L.P., Van Staal, C.R., McClelland, W.C., Israel, S., and Mihalynuk, M.G., Baltican crustal provenance for Cambrian–Ordovician sandstones of the Alexander terrane, North American Cordillera: evidence from detrital zircon U–Pb geochronology and Hf isotope geochemistry, J. Geol. Soc. (London), 2013, vol. 170, pp. 7–18.

    Article  Google Scholar 

  2. Black, L. and Gulson, B., The age of the Mud Tank carbonatite, Strangways range, Northern Territory, BMR J. Aust. Geol. Geophys., 1978, no. 3, pp. 227–232.

  3. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., and Foudoulis, C., TEMORA 1: a new zircon standard for U–Pb geochronology, Chem. Geol., 2003, vol. 200, nos. 1–2, pp. 155–170.

    Article  Google Scholar 

  4. Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., Detrital zircon record and tectonic setting, Geology, 2012, vol. 40, pp. 875–878.

    Article  Google Scholar 

  5. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.

    Article  Google Scholar 

  6. Dickinson, W.R., Beard, L.S., Brackenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., Provenance of North American Phanerozoic sandstones in relation to tectonic setting, Geology, 1983, vol. 94, no. 2, pp. 222–235.

    Google Scholar 

  7. Ershova, V.B., Prokopiev, A.V., Nikishin, V.A., Khudoley, A.K., Malyshev, N.A., and Nikishin, A.M., New data on Upper Carboniferous–Lower Permian deposits of Bol’shevik Isl. (Severnaya Zemlya Archipelago), Polar Res., 2015, vol. 34. no. 24558. https://doi.org/10.3402/polar.v34.24558

  8. Ershova, V.B., Prokopiev, A.V., and Khudoley, A.K., Devonian–Permian sedimentary basins and paleogeography of the Eastern Russian Arctic: an overview, Tectonophysics, 2016, vol. 691, pp. 234–255.

    Article  Google Scholar 

  9. Gehrels, G., Detrital zircon U–Pb geochronology: current methods and new opportunities, in Tectonics of Sedimentary Basins: Recent Advances, Busby, C. and Azor, A., Eds., Chichister: Blackwell Publ. Ltd, 2012, pp. 47–62.

  10. Gehrels, G., Detrital zircon U–Pb geochronology applied to tectonics, Annu. Rev. Earth Planet. Sci., 2014, vol. 42, pp. 127–149.

    Article  Google Scholar 

  11. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (novaya seriya). List S-47-49 – oz. Taimyr (vostochnaya chast') (The 1 : 1 000 000 State Geological Map of the Russian Federation (New Ser.). Sheet S-47-49 (Taimyr Lake, Eastern Part). Map), Pogrebitskii, Yu.E., Ed., St. Petersburg, Vseross. Nauchno-Issled. Geol. Inst., 1998 [in Russian].

    Google Scholar 

  12. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). List S-48 – oz. Taimyr (vostochnaya chast'). Karta i Ob"yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Sheet S-48 (Taimyr Lake, Eastern Part). Map and Explanatory Note), Proskurnin, V.F., Ed., St. Petersburg, Kart. Fabr. Vseross. Nauchno-Issled. Geol. Inst., 2009 [in Russian].

  13. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). List T-45–48 – mys Chelyuskin. Karta i Ob"yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Sheet T-45–48 (Chelyuskin Cape). Map and Explanatory Note), Makariev, A.A., Ed., St. Petersburg, Kart. Fabr. Vseross. Nauchno-Issled. Geol. Inst., 2013 [in Russian].

  14. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). List S-47 – oz. Taimyr (zapadnaya chast'). Karta i Ob"yasnitel’naya zapiska (The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Sheet S-47 (Taimyr Lake, Western Part). Map and Explanatory Note), Proskurnin, V.F., Ed., St. Petersburg, Kart. Fabr. Vseross. Nauchno-Issled. Geol. Inst., 2015 [in Russian].

  15. Herron, M., Geochemical classification of terrigenous sands and shales from core or log data, J. Sediment. Res., 1988, vol. 58, no. 5, pp. 820–829.

    Google Scholar 

  16. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 2004, vol. 211, nos. 1–2, pp. 47–69.

    Article  Google Scholar 

  17. Khudoley, A.K., Verzhbitsky, V.E., Zastrozhnov, D.A., O’Sullivan, P., Ershova, V.B., Proskurnin, V.F., Tuchkova, M.I., Rogov, M.A., Kyser, T.K., Malyshev, S.V., and Schneider, G.V., Late Paleozoic–Mesozoic tectonic evolution of the eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey–Khatanga Depression, J. Geodynamics, 2018, vol. 119, pp. 221–241.

    Article  Google Scholar 

  18. Kurapov, M.Yu., Ershova, V.B., Makariev, A.A., Makarieva, E.M., Khudolei, A.K., Luchitskaya, M.V., and Prokopiev, A.V., Carboniferous granitoid magmatism of Northern Taimyr: Results of isotopic–geochemical study and geodynamic interpretation, Geotectonics, 2018, vol. 52, no. 2, pp. 225–239.

    Article  Google Scholar 

  19. Kuz’min, V.K., Proskurnin, V.F., and Larionov, A.N., About the Late Riphean dating of the Snezhninsky complex granitoids (the North-East Taimyr) according to the zirconometry data, Proc. Russ. Mineral. Soc, 2007, vol. 136, no. 1, pp. 42–49.

    Google Scholar 

  20. Kuznetsov, N.B. and Romanyuk, T.V., The Paleozoic evolution of the Polar Urals: the Voikar basin with the oceanic type crust existed for at least 65 Ma, Byull. Moscow Soc. Nat. Geol. Ser., 2014, vol. 89, no. 5, pp. 56–70.

    Google Scholar 

  21. Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., O’Reilly, S.Y., and Griffin, W.L., Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models, Gondwana Res., 2010, vol. 17, pp. 583–601.

    Article  Google Scholar 

  22. Kuznetsov, N.B., Soboleva, A.A., Miller, E.A., Udoratina, O.V., Gehrels, J., and Romanyuk, T.V., First U–Pb datings of detrital zircons from Middle and Upper Paleozoic sandstones of the Polar Urals: Testing the regional tectonic models, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 183–188.

    Google Scholar 

  23. Ludwig, K.R., SQUID 1.00, A User’s Manual, Berkeley Geochronol. Center. Spec. Publ., 2000, no. 2.

  24. Maslov, A.V., Mizens, G.A., Podkovyrov, V.N., Nozhkin, A.D., Sokur, T.M., Malinovsky, A.I., Sorokin, A.A., Smirnova, Yu.N., Gareev, E.Z., Dmitrieva, N.V., Krupenin, M.T., and Letnikova, E.F., Synorogenic clay rocks specifics of bulk composition and paleotectonics, Geochem. Int., 2015, vol. 53, no. 6, pp. 510–533.

    Article  Google Scholar 

  25. Maslov, A.V., Podkovyrov, V.N., Mizens, G.A., Nozhkin, A.D., Fazliakhmetov, A.M., Malinovsky, A.I., Khudoley, A.K., Kotova, L.N., Kuptsova, A.V., Gareev, E.Z., and Zainullin, R.I., Tectonic setting discrimination diagrams for terrigenous rocks: a comparison, Geochem. Int., 2016, vol. 54, no. 7, pp. 569–583.

    Article  Google Scholar 

  26. McBride, E.F., A classification of common sandstones, J. Sediment. Petrol., 1963, vol. 33, pp. 664–669.

    Google Scholar 

  27. McLennan, S.M., Hemming, S.R., McDaniel, D.K., and Hanson, G.N., Geochemical approaches to sedimentation, provenance, and tectonics, Geol. Soc. Am. Spec. Pap., 1993, vol. 284, pp. 21–40.

    Google Scholar 

  28. McLennan, S.M., Bock, B., Hemming, S.R., Hurowitz, J.A., Lev, S.M., and McDaniel, D.K., The role of provenance and sedimentary processes in the geochemistry of sedimentary rocks, in Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments, Lentz, D., Ed., St. John’s: Geol. Assoc. Canada, 2003, pp. 7–38.

    Google Scholar 

  29. Miller, E.L., Kuznetsov, N., Soboleva, A., Udoratina, O., Grove, M.J., and Gehrels, G., Baltica in the cordillera? Geology, 2010, vol. 39, pp. 791–794.

    Article  Google Scholar 

  30. Pease, V., Eurasian orogens and Arctic tectonics: an overview, Geol. Soc. Mem. London, 2011, vol. 35, pp. 311–324.

    Article  Google Scholar 

  31. Pease, V. and Vernikovsky, V., The tectono-magmatic evolution of the Taimyr Peninsula: further constraints from new ion-microprobe data, Polarforschung, 2000, vol. 68, pp. 171–178.

    Google Scholar 

  32. Pettijohn, F.J., Potter, P.E., and Siever, R., Sand and Sandstone, New York: Springer, 1987.

    Book  Google Scholar 

  33. Priyatkina, N., Collins, W.J., Khudoley, A.K., Zastrozhnov, D., Ershova, V., Chamberlain, K., Proskurnin, V., and Shatsillo, A., The Proterozoic evolution of northern Siberian Craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform, Int. Geol. Rev., 2017, vol. 1, pp. 1–27.

    Google Scholar 

  34. Proskurnin, V.F., Vernikovsky, V.A., Metelkin, D.V., Petrushkov, B.S., Vernikovskaya, A.E., Gavrish, A.V., Bagaeva, A.A., and Larionov, A.N., Rhyolite–granite association in the Central Taimyr zone: evidence of accretionary-collisional events in the Neoproterozoic, Russ. Geol. Geophys., 2014, vol. 55, no. 1, pp. 18–32.

    Article  Google Scholar 

  35. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny)), Ufa: DizainPoligrafServis, 2010 [in Russian].

  36. Rozen, O.M., The Siberian Craton: tectonic zonation and stages of evolution, Geotectonics, 2003, vol. 37, no. 3, pp. 175–192.

    Google Scholar 

  37. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins. Geol. Soc. London. Spec. Publ., 1989, no. 42, pp. 313–345.

  38. Taylor, S.R. and McLennan, S.M., The Continental Crust : Its Composition and Evolution, Blackwell, Oxford, 1985.

    Google Scholar 

  39. Uflyand, A.K., Natapov, L.M., Lopatin, V.M., and Chernov, D.V., On the tectonic nature of Taimyr, Geotektonika, 1991, no.6, pp. 76–93.

  40. Vernikovsky, V.A., Geodinamicheskaya evolyutsiya Taimyrskoi skladchatoi oblasti (Geodynamic Evolution of the Taimyr Fold Area), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 1996 [in Russian].

  41. Vernikovsky, V.A. and Vernikovskaya, A.E., Central Taimyr accretionary belt (Arctic Asia): Meso-Neoproterozoic tectonic evolution and Rodinia breakup, Precambrian Res., 2001, vol. 110, pp. 127–141.

    Article  Google Scholar 

  42. Vernikovsky, V.A., Neimark, L.A., Ponomarchuk, V.A., Vernikovskaya, A.E., Kireev, A.D., and Kuzmin, D.S., Geochemistry and age of collision granitoids and metamorphites of the Kara microcontinent (Northern Taimyr), Geol. Geofiz., 1995, vol. 36, no. 12, pp. 50–64.

    Google Scholar 

  43. Vernikovsky, V.A., Sal’nikova, E.B., Kotov, A.B., Kovach, V.P., and Yakovleva, S.Z., Precambrian granites of the Faddey terrane (Northern Taimyr): New geochemical and geochronological (U–Pb, Sm–Nd) data, Dokl. Akad. Nauk, 1998, vol. 363, no. 5, pp. 653–657.

    Google Scholar 

  44. Vernikovsky, V.A., Metelkin, D.V., Vernikovskaya, A.E., Sal’nikova, E.B., Kovach, V.P., and Kotov, A.B., The oldest island arc complex of Taimyr: Concerning the issue of the Central-Taimyr accretionary belt formation and paleogeodynamic reconstructions in the Arctic, Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 186–192.

    Article  Google Scholar 

  45. Vernikovsky, V.A., Dobretsov, N.L., Metelkin, D.V., Matushkin, N.Yu., and Kulakov, I.Yu., Concerning tectonics and the tectonic evolution of the Arctic, Russ. Geol. Geophys., 2013, vol. 54, no. 8, pp. 838–858.

    Article  Google Scholar 

  46. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., and Spiegel, W., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis, Geostand. Newsl., 1995, vol. 19, no. 1, pp. 1–23.

  47. Williams, I.S., U–Th–Pb geochronology by ion microprobe, in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, McKibben, M.A., Shanks III, W.C., and Ridley, W.I., Eds., Rev. Econ. Geol., 1998, no. 7, pp. 1–35.

  48. Yudovich, E.Ya. and Ketris, M.P., Osnovy litokhimii (Foundations of Lithogeochemistry), St. Petersburg: Nauka, 2000 [in Russian].

  49. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR. Kn. 2 (Tectonics of Lithospheric Plates of the USSR. Book 2), Moscow: Nedra, 1990 [in Russian].

  50. Zhang, X., Omma, J., Pease, V., and Scott, R., Provenance of Late Paleozoic–Mesozoic sandstones, Taimyr Peninsula, the Arctic, Geosciences, 2013, vol. 3, pp. 507–527.

    Article  Google Scholar 

  51. Zhang, X., Pease, V., Omma, J., and Benedictus, A., Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr, Arctic Russia: a comparison of heavy mineral analysis by optical and QEMSCAN methods, Sediment. Geol., 2015, vol. 329, pp. 166–176.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Samples 62096, 62140, and 62030-2 were kindly submitted by D.A. Zastrozhnov (VSEGEI, the University of Oslo). We are grateful to A.B. Kotov (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) for helpful remarks which contributed to the improvement of the contents of this paper.

Funding

Isotopic studies and data interpretation were supported by the Australian Research Council Discovery Project 120104004 (WJ Collins) and the Russian Foundation for Basic Research (project no. 19-05-00521). Petrographic and geochemical studies and data interpretation were supported by the Russian Science Foundation (project no. 17-17-01171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Priyatkina.

Additional information

Translated by E. Murashova

Reviewers: A.B. Kotov, N.B. Kuznetsov

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyatkina, N.S., Khudoley, A.K. & Kuptsova, A.V. Provenance of the Neoproterozoic and Upper Paleozoic Siliciclastic Complexes of the Eastern Taimyr: Petrographic, Geochemical, and Geochronological Data. Stratigr. Geol. Correl. 28, 638–652 (2020). https://doi.org/10.1134/S0869593820060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593820060088

Keywords:

Navigation