Skip to main content
Log in

A link between global climate variability in the Pleistocene and variations in the Earth’s orbital parameters

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The study demonstrates that the orbital climatic diagram (OCD) built on the basis of the simplified and general concepts of mechanisms for climatic response to orbital forcing can be a reasonable alternative to Milankovitch’s and his followers’ discrete insolation curves, which are widely used in paleoclimate interpretations. Comparison of the OCD and the oxygen isotope record LR04 indicates a fairly good match (considering the simplicity of the OCD construction and interpretation) in 0–1240 ka. The study discusses some discrepancies in the chronology and structure of the LR04 and OCD. It was shown that climate response may differ from that predicted by orbital insolation forcing on the basis of the generally accepted mechanisms causing transformation of orbital signals. It was shown that a shift from a dominant glacial periodicity of 41 to 100 k.y. (Middle Pleistocene transition) took place at ∼1240 ka. Since then, the 100-k.y. eccentricity cycle has not been interrupted. Therefore, strictly speaking, the revised numbering of marine isotope stages (MIS) should be adopted for the interval of 1240-900 ka to reflect realistic 100-k.y. cycles instead of 41-k.y. cycles, similar to the interval of 900–100 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassinot, F.C., Labeyrie, L.D., Vincent, E., et al., The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 1994, vol. 126, pp. 91–108.

    Article  Google Scholar 

  • Berger, A.L. and Loutre, M.F., Insolation values for the climate of the last 10 million years, Quatern. Sci. Rev., 1991, vol. 10, pp. 297–317.

    Article  Google Scholar 

  • Berger, A., Loutre, M., and Melice, J., Milankovitch and beyond, in Paleoclimate and the Earth Climate System: Milutin Milankovitch Anniversary Symp. Abstr., Belgrade: Serbian Acad. Sci. Arts, 2004, pp. 31–50.

    Google Scholar 

  • Bintanja, R. and van de Wal, R.S.W., North American icesheet dynamics and the onset of 100000-years glacial cycles, Nature, 2008, vol. 454, pp. 869–872.

    Article  Google Scholar 

  • Bol’shakov, V.A. and Bol’shakov, P.V., Astronomic paleoclimate theory—a new concept, Stratigr. Geol. Correl., 1999, vol. 7, no. 6, pp. 3–13.

    Google Scholar 

  • Bol’shakov, V.A., On the depth of paleomagnetic record acquisition by deep-sea sediments with reference to the climatic-stratigraphic position of the Matuyama-Bryunes reversal, Fiz. Zemli, 1999, no. 6, pp. 93–96.

    Google Scholar 

  • Bol’shakov, V.A., New way for plotting diagram of the paleoclimatic changes in the Pleistocene, Dokl. Akad. Nauk. Ser. Geogr., 2000, vol. 374, no. 5, pp. 692–695.

    Google Scholar 

  • Bol’shakov, V.A., Novaya kontseptsiya orbital’noi teorii paleoklimata (New Concept of the Orbital Paleoclimate Theory), Moscow: MGU, 2003b [in Russian].

    Google Scholar 

  • Bol’shakov, V.A., New way of chronometerizing oxygen isotope records of deep-sea sediments, Dokl. Akad. Nauk, 2003a, vol. 388, no. 1, pp. 105–108.

    Google Scholar 

  • Bol’shakov, V.A., Ivanova, E.V., and Prudkovskii, A.G., Applying a new method for timing paleoclimatic deep-sea sedimentary records, Oceanology, 2005, vol. 45, no. 6, pp. 916–926.

    Google Scholar 

  • Bol’shakov, V.A., Correlation of continental and deep-sea deposits of the Pleistocene: formulation of the question and some problems, Izv. Akad. Nauk, Ser. Geogr., 2006, no. 4, pp. 16–28.

    Google Scholar 

  • Bol’shakov, V.A., How long will the “precession epoch” last in terms of Pleistocene glacial cycles?, Rus. J. Earth Sci., 2008, vol. 10, ES3004. doi: 10.2205/2008ES000299

    Google Scholar 

  • Bol’shakov, V.A., The astrochronological method of dating paleogeographyical events, in Metody paleogeograficheskikh rekonstruktsii. Metod. posobie (Methods of Paleogeographical Reconstructions: A Methodological Handbook), Kaplin, P.A. and Yanin, T.A., Eds., Moscow: Izd-vo MGU, 2010, pp. 289–307.

    Google Scholar 

  • Bol’shakov, V.A., The problem of the 11th marine isotope stage from the viewpoint of the new conception of the orbital theory of the paleoclimate, Okeanologiya, 2010a, vol. 50, no. 2, pp. 236–247.

    Google Scholar 

  • Bol’shakov, V.A. and Kapitsa, A.P., Lessons of the development of the orbital theory of paleoclimate, Vestn. Ross. Akad. Nauk, 2011, vol. 81, no. 7, pp. 603–612.

    Google Scholar 

  • Bol’shakov, V.A., The orbital climatic diagram as an alternative to the use of discrete insolation curves for paleoclimatic interpretations and correlation, Byull. Kom. po Izuch. Chetvertichnogo Perioda, 2012a, vol. 83, pp. 95–103.

    Google Scholar 

  • Bol’shakov, V.A., The comparison of the orbital-climatic diagram with the benthic oxygen isotope stack LR04 for investigation of the middle Pleistocene transition, in Proc. 9th Int. Conf. “Problems of Geocosmos,” 2012b, pp. 203–208.

    Google Scholar 

  • Bol’shakov, V.A., Kapitsa, A.P., and Rees, W.G., James Croll: a scientist ahead of his time, Polar Rec., 2012, vol. 48, no. 2, pp. 201–205.

    Article  Google Scholar 

  • Bol’shakov, V.A., An answer to I.I. Smul’skii’s criticism, Vestn. Ross. Akad. Nauk, 2013a, vol. 83, no. 1, pp. 40–44.

    Google Scholar 

  • Bol’shakov, V.A., Study of parameters of the Middle Pleistocene transition by comparison of the oxygen-isotope record LR04 with the orbital-climatic diagram, Dokl. Akad. Nauk, 2013b, vol. 449, no. 3, pp. 338–341.

    Google Scholar 

  • Cande, S.C. and Kent, D.V., Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, J. Geophys. Res., 1995, vol. 100, no. B4, pp. 6093–6095.

    Article  Google Scholar 

  • Clark, P.U., Archer, D., Pollard, D., et al., The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, Quarter. Sci. Rev., 2006, vol. 25, pp. 3150–3184.

    Article  Google Scholar 

  • Croll, J., Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate, London: Edward Stanford, 1875.

    Google Scholar 

  • Emiliani, C., Quaternary hypsithermals, Quaternary Res., 1972, vol. 2, pp. 270–273.

    Article  Google Scholar 

  • EPICA community members, Eight glacial cycles from an Antarctic ice core, Nature, 2004, vol. 429, pp. 623–628.

  • de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L., Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 2005, vol. 433, pp. 295–298.

    Google Scholar 

  • GRIP members, Climate instability during the last interglacial period recorded in the GRIP ice core, Nature, 1993, vol. 364, pp. 203–207.

    Article  Google Scholar 

  • Hays, J.D., Imbrie, J., and Shackleton, N., Variation in the Earth’s orbit: pacemaker of the ice ages, Science, 1976, vol. 194, pp. 1121–1132.

    Article  Google Scholar 

  • Head, M.J., Pillans, B., and Farguhar, S.A., The early-middle Pleistocene transition: characterization and proposed guide for the defining boundary, Episodes, 2008, vol. 31, no. 2, pp. 255–259.

    Google Scholar 

  • Huybers, P. and Wunsch, C., A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanol., 2004, vol. 19, PA 1028.

    Google Scholar 

  • Imbrie, J. and Imbrie, K.P., Ice Ages: Solving the Mystery, Cambridge, Massachusetts: Harvard Univ. Press, 1979.

    Google Scholar 

  • Imbrie, J., Hays, J., Martinson, D., et al., The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in Milankovitch and Climate, Berger, A.L. et al., Eds., NATO ASI Ser. C. 126, Dordrecht: Reidel, 1984, pp. 269–305.

    Google Scholar 

  • Imbrie, J., Berger, A., Boyle, A., et al., On the structure and origin of major glaciation cycles. 2. The 100000-year cycle, Paleoceanogr., 1993, vol. 8, pp. 699–735.

    Article  Google Scholar 

  • Jouzel, J., Masson-Delmotte, V., Cattani, O., et al., Orbital and millennial Antarctic climate variability over the past 800000 years, Science, 2007, vol. 317, pp. 793–796.

    Article  Google Scholar 

  • Karabanov, E.B., Prokopenko, A., Kuz’min, M.I., et al., Glacial and interglacial periods of Siberia: paleoclimate record of Lake Baikal and correlation with West Siberian correlation scheme, Geol. Geofiz., 2001, nos. 1–2, pp. 48–63.

    Google Scholar 

  • Karner, D.B., Levine, J., Medeiros, B.P., and Muller, R.A., Constructing a stacked benthic δ18O record, Paleoceanogr., 2002, vol. 17, no. 3, PA 1030. doi: 10.1029/2001PA000667

    Article  Google Scholar 

  • Lisiecki, L.E. and Raymo, M.E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanogr., 2005, vol. 20, PA 1030. doi: 10.1029/2004PA001071

    Google Scholar 

  • Lisiecki, L. and Raymo, M., Plio-Pleistocene evolution: trends and transitions in glacial cycle dynamics, Quatern. Sci. Rev., 2007, vol. 26, pp. 56–69.

    Article  Google Scholar 

  • Lisiecki, L.E., Links between eccentricity forcing and the 100000-year glacial cycle, Nature Geosci., 2010, vol. 3, pp. 349–352.

    Article  Google Scholar 

  • Loutre, M.F., Paillard, D., Vimeix, F., and Cortijo, E., Does mean annual insolation have the potential to change the climate?, Earth Planet. Sci. Lett., 2004, vol. 221, pp. 1–14.

    Article  Google Scholar 

  • Markov, K.K., On the content of concepts of “glacial epoch” and “interglacial epoch,” in Markov K.K. Izbrannye trudy. Paleogeografiya i noveishie otlozheniya (Markov, K.K. Selected Works. Paleogeography and the Most Recent Deposits), Moscow: Nauka, 1986, pp. 25–30.

    Google Scholar 

  • de Menocal, P.B., Ruddiman, W.F., and Kent, D.V., Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes-Matuyama reversal and oxygen isotopic stage 19.1, Earth Planet. Sci. Lett., 1990, vol. 99, pp. 1–13.

    Article  Google Scholar 

  • Milankovitch, M., Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen, Berlin: Gebruder Borntraeger, 1930.

    Google Scholar 

  • Petit, J., Jouzel, J., Raynaud, D., et al., Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica, Nature, 1999, vol. 399, pp. 429–436.

    Article  Google Scholar 

  • Pisias, N.G. and Moore, T.C., The evolution of the Pleistocene climate: a time series approach, Earth Planet. Sci. Lett., 1981, vol. 52, pp. 450–458.

    Article  Google Scholar 

  • Prell, W.L., Imbrie, J., Martinson, D.G., et al., Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary, Paleoceanography, 1986, vol. 1, no. 2, pp. 137–162.

    Article  Google Scholar 

  • Ruddiman, W.F., Raymo, M., and McIntyre, A., Matuyama 41000-year cycles: north Atlantic ocean and Northern Hemisphere ice sheets, Earth Planet. Sci. Lett., 1986, vol. 80, pp. 117–129.

    Article  Google Scholar 

  • Schneider, D.A., Kent, D.V., and Mello, G.A., A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change, Earth Planet. Sci. Lett., 1992, vol. 111, pp. 395–405.

    Article  Google Scholar 

  • Shackleton, N.J., Berger, A., and Peltier, W., An alternative astronomical calibration of the lower Pleistocene time scale based on ODP Site 677, Trans. R. Soc. Edinb., 1990, vol. 81, pp. 251–261.

    Article  Google Scholar 

  • Shackleton, N., New data on the evolution of Pliocene climatic stability, in Paleoclimate and Evolution with Emphasis on Human Origins, Vrba, E.S., et al., Eds., Yale Univ. Press, 1995, pp. 242–248.

    Google Scholar 

  • Spell, T. and McDougall, I., Revisions to the age of the Brunhes-Matuyama boundary and the Pleistocene geomagnetic polarity timescale, Geophys. Rev. Lett., 1992, vol. 19, pp. 1181–1184.

    Article  Google Scholar 

  • Tauxe, L., Herbert, T., Shackleton, N., and Kok, Y., Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and Asian loess sequences, Earth Planet. Sci. Lett., 1996, vol. 140, pp. 133–146.

    Article  Google Scholar 

  • Thompson, W.G. and Goldstein, S.L., A radiometric calibration of the SPECMAP timescale, Quatern. Sci. Rev., 2006, vol. 25, nos. 23–24, pp. 3207–3215.

    Article  Google Scholar 

  • Velichko, A.A., Global climate change and reaction of the landscapes, Izv. Akad. Nauk SSSR, Ser. Geograf., 1991, no. 5, pp. 5–22.

    Google Scholar 

  • Velichko, A.A., Middle Valdai, Zyryan-Sartan megainterval and climatic rank of its optimum, in Fundamental’nye problemy kvartera: itogi izucheniya i osnovnye napravleniya dal’neishikh issledovanii. Mat. VI Vseross. sovesh. po izucheniyu chetvertichnogo perioda (Proc. VI All-Rus. Quaternary Conf. “Fundamental Problems of the Quaternary: Results and Trends of Further Research”), Novosibirsk: Izd-vo SO RAN, 2009b, pp. 107–109.

    Google Scholar 

  • Winograd, I.J., Coplen, T., Landwehr, J., et al., Continuous 500000-year climate record from vein calcite in Devils Hole, Nevada, Science, 1992, vol. 258, pp. 255–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bol’shakov.

Additional information

Original Russian Text © V.A. Bol’shakov, 2014, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2014, Vol. 22, No. 5, pp. 97–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, V.A. A link between global climate variability in the Pleistocene and variations in the Earth’s orbital parameters. Stratigr. Geol. Correl. 22, 538–551 (2014). https://doi.org/10.1134/S0869593814050049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593814050049

Keywords

Navigation