Skip to main content
Log in

Genesis of Dunite from the Guli Puton according to Olivine-Hosted Melt Inclusion Data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Olivine from the dunite of the Guli pluton crystallized from olivine–melanephelinite magma at temperatures above 1260°C according to the melt inclusion study. The melts were enriched with volatile components (S, CO2, F, H2O, slightly Cl) and contained high amount of incompatible elements. In addition, olivine hosts sporadic inclusions of picrite-basalt composition, which are close to picrite–meimechite melts preserved in chromite from dunite according to literature data. This suggests the influx of picrite–meimechite melts and their mixing with melanephelinite magma during the formation of dunites in the magma chamber. Based on the indicator ratios of incompatible elements, these melts and melanephelinite magma had different sources, which were located in undepleted mantle at different depths and derived through different degree of partial melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Arndt, N., Lehnert, K., and Vasil’ev, Y., Meimechites: highly magnesian alkaline magmas from the subcontinental lithosphere, Lithos, 1995, vol. 34, pp. 41–59. https://doi.org/10.1016/0024-4937(95)90009-8

    Article  CAS  Google Scholar 

  2. Arndt, N., Chauvel, C., Czamanske, G., and Fedorenko, V., Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province, Contrib. Mineral. Petrol., 1998, vol. 133, pp. 297–313. https://doi.org/10.1007/s004100050453

    Article  CAS  Google Scholar 

  3. Basu, A.R., Poreda, R.J., Renne, P.R., et al., High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts, Science, 1995, vol. 269, pp. 822–825. https://doi.org/10.1126/science.269.5225.822

    Article  CAS  Google Scholar 

  4. Cullers, R.L. and Graf, J.L., Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks, Kimberlites, Amsterdam: Elsevier, 1984, vol. 2, 237–274.

    Google Scholar 

  5. Dalrymple, G.B., Czamanske, G.K., Fedorenko, V.A., et al., A reconnaissance 40Ar/39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2071–2083. https://doi.org/10.1016/0016-7037(95)00127-1

    Article  CAS  Google Scholar 

  6. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst., 2011, vol. 12, p. Q07021. https://doi.org/10.1029/2011GC003516

    Article  CAS  Google Scholar 

  7. Egorov, L.S., Shape, structure, and evolution of the Guli ultrabasic-alkaline massif with carbonatites, Izv. Akad. Nauk SSSR. Ser. Geol., 1989, no. 7, pp. 41–56.

  8. Egorov L.S. Iolit-karbonatitovyi magmatizm (na primere Maimecha-Kotuiskogo kompleksa Polyarnoi Sibiri) (Ijolite–Carbonatite Magmatism by the Example of the Maymecha–Kotui Complex, Polar Siberia), Leningrad: Nedra, 1991.

  9. Gudfinnsson, G.H. and Presnall, D.C., Continuous gradations among primary kimberlitic, carbonatitic, melilititic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa, J. Petrol., 2005, vol. 46, no. 8, pp. 1645–1659. https://doi.org/10.1093/petrology/egi029

    Article  CAS  Google Scholar 

  10. Hofmann, A.W., Mantle geochemistry: the message from oceanic volcanism, Nature, 1997, vol. 385, pp. 219–229.

    Article  CAS  Google Scholar 

  11. Kamo, S.L., Czamanske, G.K., Amelin, Y., et al., Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 ma, Earth Planet. Sci. Lett., 2003, vol. 214, pp. 75–91.

    Article  CAS  Google Scholar 

  12. Kogarko, L.N. and Zartman, R.E., New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha–Kotuy Province and the Siberian superplume: U–Th–Pb isotopic systematics, Geochem. Int., 2011, vol. 49, no. 5, pp. 439–448.

    Article  CAS  Google Scholar 

  13. Kravchenko, S.M. and Bagdasarov, Yu.A., Geokhimiya, mineralogiya i genezis apatitonosnykh massivov (Maimecha-Kotuiskaya karbonatitovaya provintsiya) (Geochemistry, Mineralogy, and Genesis of Apatite-Bearing Massifs (Maimecha–Kotui Carbonatite Massif), Moscow: Nauka, 1987. 128 s.

  14. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., et al., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (Caledonian Complex of the Ultrabasic, Alkaline rocks and Carbonatites of the Kola Peninsula and North Karelia), Moscow: Nedra, 1965.

  15. Kurenkov, S.A., Dispersed spreading in the Mesozoic evolution of the Siberian Platform and Taimyr orogenic area, Vnutriplitnye yavleniya v zemnoi kore (Within-Plate Phenomena in the Earth’s Crust), Moscow: Nauka, 1988, pp. 57–70.

    Google Scholar 

  16. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  CAS  Google Scholar 

  17. Nash, W.P. and Crecraft, H.R., Partition coefficients to trace elements in silicic magmas, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 11, pp. 2309–2322.

    Article  CAS  Google Scholar 

  18. Osorgin, N.Yu. and Tomilenko, A.A. Mikrotermokamera (Microthermostage), USSR Inventor Certificate No. 1562816, 1990.

  19. Panina, L.I. and Motorina, I.V., Meimechites, porphyritic alkaline picrites, and melanephelinites of Siberia: conditions of crystallization, parental magmas, and sources, Geochem. Int., 2013, vol. 51, no. 2, pp. 109–128.

    Article  CAS  Google Scholar 

  20. Panina, L.I. and Usol’tseva, L.M., Pyroxenites of the Krestovskaya alkaline–ultramafic intrusion: composition of parental magmas and their sources, Geochem. Int., 2009, vol. 47, no. 4, pp. 358–371.

    Article  Google Scholar 

  21. Panina, L.I., Isakova, A.T., Sazonov, A.M., The olivinite of the Krestovskaya intrusion–the product of larnite-normative alkali ultramafic magma: melt inclusion data, Petrology, 2018, vol. 26, no. 2, pp. 167–180.

    Article  CAS  Google Scholar 

  22. Rass, I.T. and Plechov, P.Yu., Melt inclusions in olivines from the olivine–melilitite rock of the Guli Massif, northwestern Siberian Platform, Dokl. Earth Sci., 2000, vol. 375, no. 3, pp. 1399–1402.

    Google Scholar 

  23. Ryabchikov, I.D., Kogarko, L.N., and Solovova, I.P., Physicochemical conditions of magma formation at the base of the Siberian Plume: Insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui Province, Petrology, 2009, vol. 17, no. 3, pp. 287–299.

    Article  CAS  Google Scholar 

  24. Salters, V.J.M. and Longhi, J., Trace elements partitioning during the initial stages of melting beneath migocean ridges, Earth Planet. Sci. Lett., 1999, vol. 166, pp. 15–30.

    Article  CAS  Google Scholar 

  25. Simonov V.A., Vasiliev, Yu.R., Stupakov, S.I., et al., Physicochemical Parameters of Crystallization of Dunite from the Guli Ultrabasic Massif (Maimecha Kotui Province), Dokl. Earth Sci., 2015, vol. 464, no. 3, pp. 979–982.

    Article  CAS  Google Scholar 

  26. Simonov V.A., Vasil’ev Yu.R., Stupakov S.I. i dr. Petrogenezis of dunites of the Guli ultrabasic massif (northern Siberian Platform), Russ. Geol. Geophys., 2016, vol. 57, pp. 1696–1715.

    Article  Google Scholar 

  27. Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., et al., Interpretatsiya geokhimicheskikh dannykh (Interpretation of Geochemical Data), Moscow: Nauka, 2001.

  28. Sobolev A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 209–220.

    Google Scholar 

  29. Sobolev, A.V., Kamenetsky, V.S., and Kononkova, N.N., New petrological data on the Siberian meimechites, Geokhimiya, 1991, no. 8, pp. 1084–1095.

  30. Sobolev, A.V. and Slutsky, A.B., Composition and conditions of crystallization of initial melt of Siberian meimechites in relation with the general problem of ultrabasic magmas, Geol. Geofiz., 1984, vol. 25, no. 12, pp. 97–110.

    Google Scholar 

  31. Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., et al., Siberian meimechites: origin and relation to floor basalts and kimberlites, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 999–1033.

    Article  Google Scholar 

  32. Vasil’ev, Yu.R., Petrology of the ultrabasic rocks of the Glui pluton (northern Siberian Platform), Problemy petrologii ul’traosnovnykh i osnovnykh porod (Petrological Problems of Ultrabasic and Basic Rocks), Moscow: Nauka, 1972, pp. 7–25.

    Google Scholar 

  33. Vasil’ev, Yu.R. and Gora, M.P., The origin of dunites and olivinites in the alkali-ultrabasic intrusive complexes of the Siberian Craton, Dokl. Earth Sci., 2012, vol. 442, no. 3, pp. 36–39.

    Article  Google Scholar 

  34. Vasil’ev, Yu.R., Gora, M.P., Kuzmin, D.V., Meimechit-foiditovyi vulkanizm Polyarnoi Sibiri (Meimechite–Foidite Volcanism of the Polar Siberia), Novosibirsk: Iz-vo SO RAN, 2017.

  35. Vasil’ev, Yu.R. and Zolotukhin, V.V., Petrologiya giperbazitov severa Sibirskoi platformy i nekotorye problemy ikh genezisa (Petrology of Hyperbasites of the Northern Siberian Platform and their Genesis), Novosibirsk: Nauka, 1975.

  36. Veksler, I.V., Nielsen, T.F.D., and Sokolov, S.V., Mineralogy of crystallized melt inclusions from gardiner and kovdor ultramafic alkaline complexes: implications for carbonatite genesis, J. Petrol., 1998, vol. 39, nos. 11–12, pp. 2015–2031. https://doi.org/10.1093/petroj/39.11-12.2015

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.P. Solovova and anonymous reviewer whose critical comments significantly improved the manuscript.

Funding

This work was made in the framework of the government-financed task of the Institute of Geology and Mineralogy of the Siberian Branch, Russian Academy of Sciences (project no. 122041400312-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Panina or A. T. Isakova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, L.I., Isakova, A.T. & Rokosova, E.Y. Genesis of Dunite from the Guli Puton according to Olivine-Hosted Melt Inclusion Data. Petrology 32, 201–214 (2024). https://doi.org/10.1134/S0869591124020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591124020061

Keywords:

Navigation