Skip to main content
Log in

Experimental Investigation into Interaction between Amphibole and Highly Saline H2O–NaCl–KCl Fluid at 750°C, 700 MPa: Implications to Alkaline Metasomatism of Amphibole Rocks

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents experimental data on the interaction of amphibole with NaCl–H2O and (K, Na)Cl–H2O solutions at varying salt content. When interacting with H2O–NaCl fluid, amphibole remains the predominant mineral in all experiments, and the newly formed minerals are Na-phlogopite, plagioclase, and nepheline/sodalite. At \({{a}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) > 0.6, the amphibole melts. When amphibole interacts with H2O–NaCl–KCl fluid at \({{X}_{{{{{\text{H}}}_{2}}{\text{O}}}}}\) < 0.40 and ХKCl/(ХKCl + ХNaCl) in the fluid, defined as ХNaCl = 0.506 – 0.84ХKCl, the amphibole is replaced by the association of nepheline with sodic plagioclase, sodalite, and biotite. At ХKCl/(ХKCl + ХNaCl) > 0.3, nepheline, sodalite, and plagioclase become unstable, K-feldspar is formed, and biotite, clinopyroxene, and amphibole remain stable. At ХKCl/(ХKCl + ХNaCl) > 0.5, the association Cpx + Bt + Kfs + Grt (grossular–andradite) is stable. Thus, grossular–andradite garnet is an indicator of a high potassium activity in the fluid, whereas nepheline testifies that the sodium activity was high. Na → K exchange is typical of the amphibole and biotite, and Ca → Na exchange occurs in the clinopyroxene, and all of these minerals (but neither nepheline nor garnet) remain generally stable within a wide range of the K/Na ratio in the fluid. Clinopyroxene in the experiments spans Ca–Fe–Mg compositions with a varying, sometimes high, Al content, and the amphiboles belong to the pargasite–hastingsite series. With an increase in \({{a}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) (\({{X}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) > 0.57), i.e., a decrease in the gross salinity of the fluid, melts are generated, and their composition varies from trachyte to phonolite. An increase in the ХKCl/(ХKCl + ХNaCl) ratio in the fluids leads to a decrease in alumina content of the melts. An increase in the total salinity of the fluid leads to an increase in the content of potassium in the melt and a decrease in the content of chlorine in it. The experiments have shown that interaction between amphibole and fluids containing high NaCl and KCl concentrations results in mineral associations typically produced by alkaline metasomatism of amphibole-bearing rocks and concomitant HCl enrichment in the fluid phase. The substitution of highly saline fluids for highly acidic ones leads to the leaching of Ca, Mg, Fe from the metamorphic rocks, and the transport and redeposition of these components. It follows that significant removal of FeO, MgO, CaO from rocks is sometimes a consequence of the interaction of the host rocks with saline aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Notes

  1. Gl—quenched melt(s), Hbl—amphibole, Hbl1—amphibole of the pargasite–hastingsite series in the experimental products, Hbl2rim of Fe-rich amphibole in the experimental products, Act—actinolite, Andr—andradite, Ann—annite, Ap—apatite, Arf—arfvedsonite, Bt—biotite, Cpx—clinopyroxene, Crn—corundum, Di—diopside, Eck—eckermannite, Ed—edenite, Ep—epidote, Fsp—K–Na feldspar, Gln—glaucophane, Grs—grossular, Grt—garnet, Hyp—hypersthene, Kfs—potassic feldspar, Ktp—kataphorite, Le—leucite, Na-Phl—Na-phlogopite, Ne—nepheline, Ol—olivine, Or—orthoclase, Pl—plagioclase, Prg—pargasite, Rbk—riebeckite, Rct—richterite, Sdl—sodalite, Tch—tschermakite, Tr—tremolite, Wo—wollastonite. XFe = Fe/(Fe + Mg) is Fe mole fraction, XKCl, XNaCl, and \({{X}_{{{{{\text{H}}}_{2}}{\text{O}}}}}\) are the KCl, NaCl, and H2O mole fractions in fluid, respectively, fO2—is oxygen fugacity, ASI = Al2O3/(K2O + Na2O + CaO), ANK = Al2O3/(K2O + Na2O), molecular ratios, MALI = (K2O + Na2O)–CaO, weight concentrations, p.f.u. is the number of atoms of a cation or anion per formula of a mineral.

  2. Additional materials for the Russian and English on-line versions of this paper are available at https://elibrary.ru/ and http://link.springer.com Supplementary 1 and present: ESM_1.pdf: chemical composition of the clinopyroxene; ESM_2.pdf: chemical composition of the amphibole; ESM_3.pdf: chemical composition of the feldspars; ESM_4.pdf: chemical composition of the quenched melts.

REFERENCES

  1. Acosta-Vigil, A., London, D., Morgan, G.B., and Dewers, T.A., Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800°C and 200 MPa, and applications of the aluminum saturation index, Contrib. Mineral. Petrol., 2003, vol. 146, pp. 100–119.

    Article  Google Scholar 

  2. Aranovich, L.Ya., The role of brines in high-temperature metamorphism and granitization, Petrology, 2017, vol. 25, no. 5, pp. 486–497.

    Article  Google Scholar 

  3. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  4. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  5. Aranovich, L.Y. and Newton, R.C., Reversed determination of the reaction: phlogopite + quartz = enstatite + potassium feldspar + H2O in the ranges 750–875°C and 2–12 kbar at low h2o activity with concentrated kcl solutions, Am. Mineral., 1998, vol. 83, pp. 193–204.

    Article  Google Scholar 

  6. Aranovich, L.Y. and Safonov, O.G., Halogens in high-grade metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D. and Aranovich, L.Y., Eds., New York: Springer, 2018, pp. 713–757.

    Google Scholar 

  7. Aranovich, L.Y., Newton, R.C., and Manning, C.E., Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120.

    Article  Google Scholar 

  8. Arkhangel’skaya, V.V., Ryabtsev, V.V., and Shuriga, T.N., Geological Structure and Mineralogy of Tantalum Deposits of Russia, Mineral’noe syr’e (Mineral Raw Material), Moscow: VIMS, 2012, no. 25.

  9. Azimov, P.Ya. and Bushmin, S.A., Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800°C and 1–5 kbar, Geochem. Int., 2007, vol. 45, no. 12, pp. 1210–1234.

    Article  Google Scholar 

  10. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Article  Google Scholar 

  11. Beard, J.S. and Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb, J. Petrol., 1991, vol. 32, no. 2, pp. 365–402.

    Article  Google Scholar 

  12. Buerger, M.J., The stuffed derivatives of the silica structures, Am. Mineral., 1954, vol. 39, nos 7-8, pp. 600–614.

    Google Scholar 

  13. Bushmin, S.A., Vapnik, E.A., Ivanova, M.V., et al., Fluids in high-pressure granulites, Petrology, 2020, vol. 28, no. 1, pp. 17–46.

    Article  Google Scholar 

  14. Bykov, Yu.V. and Arkhangel’skaya, V.V., Katugin rare-metal deposit, Mestorozhdeniya Zabaikal’ya (Transbaikalian Deposits), Laverov, N.P., Eds., Moscow: Geoinformmark, 1995, vol. 1(2), pp. 76–85.

  15. Cawthorn, R.G. and Collerson, K.D., The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses, J. High Resolut. Chromatogr. Chromatogr. Commun., 1974, vol. 59, pp. 1203–1208.

    Google Scholar 

  16. Chappell, B.W., Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites, Lithos, 1999, vol. 46, pp. 535–551.

    Article  Google Scholar 

  17. Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  18. Graham, C.M. and Harmon, R.S., Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water, Am. Mineral., 1984, nos. 1–2, pp. 128–138.

  19. Harlov, D.E. and Melzer, S., Experimental partitioning of Rb and K between phlogopite and concentrated (K, Rb)Cl brine: implication for the role of concentrated KCl brines in the depletion of Rb in phlogopite and the stability of phlogopite during charnockite genesis, Lithos, 2002, vol. 64, pp. 15–28.

    Article  Google Scholar 

  20. Helz, R.T., Phase relations of basalts in their melting ranges at P = 5 kb as a function of oxygen fugacity. Part I. Mafic phases, J. Petrol., 1973, vol. 14, pp. 249–302.

    Article  Google Scholar 

  21. Holloway, J.R., The system pargasite–H2O–CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid. I. Experimental results to 8 kbar, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 651–666.

    Article  Google Scholar 

  22. Izbrodin I.A., Doroshkevich A.G., Rampilov M.O. i dr. Age and mineralogical and geochemical parameters of rocks of the China alkaline massif (western Transbaikalia), Russ. Geol. Geophys., 2017, vol. 58, no. 8, pp. 903–921.

    Article  Google Scholar 

  23. Khodorevskaya, L.I., Fluid regime and the behavior of ore, trace, and rare-earth elements during granitization of metagabbro-norites of the Belomorian Group (Gorelyi Island, Kandalaksha Bay), Petrology, 2009, vol. 17, no. 4, pp. 371–388.

    Article  Google Scholar 

  24. Khodorevskaya, L.I., Experimental modeling of alkaline metasomatism under pressure gradien conditions at 750°C, Tr. Vserossiiskogo ezhegodnogo seminara po eksperimental’noi mineralogii, petrologii i geokhimii (VESEMPG-2020) (All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry), Moscow: GEOKhI RAN, 2020, pp. 119–122.

  25. Khodorevskaya, L.I. and Aranovich, L.Ya., Experimental study of amphibole interaction with H2O–NaCl fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer, Petrology, 2016, vol. 24, no. 3, pp. 215–233.

    Article  Google Scholar 

  26. Khodorevskaya, L.I. and Varlamov, D.A., High-temperature metasomatism of the layered mafic–ultramafic massif in Kiy Island, Belomorian Mobile Belt, Geochem. Int., 2018, vol. 56, no. 6, pp. 535–553.

    Article  Google Scholar 

  27. Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay Area, Lapland Granulite Belt, Southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320–349.

    Article  Google Scholar 

  28. Korikovsky, S.P. and Khodorevskaya, L.I., Granitization of Paleoproterozoic high-pressure metagabbro-norites of the Belomorian Group in Gorelyi Island, Kandalaksha Bay Area, Baltic Shield, Petrology, 2006, vol. 14, no. 5, pp. 423–451.

    Article  Google Scholar 

  29. Koritnig, S., Geochemistry of phosphorus-I. The replacement of Si4+ by P5+ in rock-forming silicate minerals, Geochim. Cosmochim. Acta, 1965, vol. 29, no. 5, pp. 361–371.

    Article  Google Scholar 

  30. Korzhinskii, D.S., Principles of alkali mobility at magmatic phenomena, Konf. Akademika D.S. Belyankinu k 70-letiyu (Proc. 70th Anniversary of D.S. Belyankin), Moscow: AN SSSR, 1946, pp. 242–261.

    Google Scholar 

  31. Kotov, A.B., Vladykin, N.V., Larin, A.M., et al., New data on the age of ore formation in the unique Katugin rare-metal deposit (Aldan Shield), Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 663–667.

    Article  Google Scholar 

  32. Kozlov, E.N. and Arzamastsev, A.A., Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula, Petrology, 2015, vol. 23, no. 1, pp. 45–67.

    Article  Google Scholar 

  33. Leake, B.E., Woolley, A.R., Birch, W.D., et al., Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.

    Article  Google Scholar 

  34. Levin, V.Ya., Shchelochnaya provintsiya Il’menskikh Vishnevykh gor (formatsii nefelinovykh sienitov Urala) (Alkaline Province of the Il’menskie Vishnevye Gory: Formations of Nepheline Syenites of the Urals), Moscow: Nauka, 1974.

  35. Levitskii, V.I., Reznitskii, L.Z., Sklyarov, E.V., et al., Svyatonosites of East Siberia: products of crustal–mantle interaction, Materialy dokl. Vserossiiskogo soveshchaniya “Sovremennye problemy geokhimii” (Proc. All Russ. Conference on the Modern Geochemical Problems), Irkutsk: IG SO RAN, 2012, vol. 2, pp. 150–152.

  36. Litvinovsky, B.A., New data on conditions of formation of svyatonosites: evidence from garnet syenites of the Bambui intrusion, Vitim highland, Geol. Geofiz., 1973, no. 1, pp. 42–51.

  37. Makrygina, V.A., Petrova, Z.I., Koneva, A.A., and Suvorova, L.F., Composition, P-T parameters, and metasomatic transformations of mafic schists of the Svyatoi Nos Peninsula, Eastern Baikal area, Geochem. Int., 2008, vol. 46, no. 2, pp. 140–155.

    Article  Google Scholar 

  38. Markl, G. and Bucher, K., Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 1998, vol. 391, pp. 781–783.

    Article  Google Scholar 

  39. Markl, G. and Piazolo, S., Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica: monitors of fluid compositional changes during late-magmatic fluid-rock interaction processes, Contrib. Mineral. Petrol., 1998, vol. 132, no. 3, pp. 246–268.

    Article  Google Scholar 

  40. McMillan, P.F., Water solubility, Rev. Mineral., 1994, vol. 30, pp. 131–156.

    Google Scholar 

  41. Mora, C.I. and Valley, J.W., Halogen-rich scapolite and biotite: implication for metamorphic fluid–rock interaction, Am. Mineral., 1989, vol. 74, pp. 721–737.

    Google Scholar 

  42. Morimoto, N., Fabries, J., Ferguson, A.K., et al., Nomenclature of pyroxenes, Am. Mineral., 1988, vol. 73, pp. 1123–1133.

    Google Scholar 

  43. Nemov, A.B., Garnet–amphibole miaskites of the Ilmeny Gory miaskite massif, South Urals; mineralogy and geochemistry, Litosfera, 2020, vol. 20, no. 5, pp. 652-667.

    Google Scholar 

  44. Newton, R.C. and Manning, C.E., Solubility of corundum in the system Al2O3–SiO2–H2O–NaCl at 800°C and 10 kbar, Chem. Geol., 2008, vol. 249, pp. 250–261.

    Article  Google Scholar 

  45. Newton, R.C., Aranovich, L.Y., Hansen, E.C., and Vandenheuvel, B.A., Hypersaline fluids in precambrian deep-crustal metamorphism, Precambrian Res., 1998, vol. 91, pp. 41–63.

    Article  Google Scholar 

  46. Newton, R.C. and Manning, C.E., Role of saline fluids in deep crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Article  Google Scholar 

  47. Niedermeier, D.R.D., Putnis, A., Geisler, Th., et al., The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions, Contrib. Mineral. Petrol., 2009, vol. 157, pp. 65–76.

    Article  Google Scholar 

  48. Nijland, T.G., Jansen, J.B., and Maijer, C., Halogen geochemistry of fluid during amphibolite-granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble Sector, south Norway, Lithos, 1993, vol. 30, pp. 167–189.

    Article  Google Scholar 

  49. Orville, P.M., Alkali ion exchange between vapor and feldspar phases, Am. J. Sci., 1963, vol. 261, pp. 201–237.

    Article  Google Scholar 

  50. Ridolfi, F. and Renzulli, A., Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1.130°C and 2.2 GPa, Contrib. Mineral. Petrol., 2012, vol. 163, no. 5, pp. 877–895.

    Article  Google Scholar 

  51. Ryabchikov, I.D., Termodinamika flyuidnoi fazy granitoidnykh magm (Thermodynamics of Fluid Phase of Granitoid Magmas), Moscow: Nauka, 1975.

  52. Sack, R.O. and Ghiorso, M.S., Thermodynamics of feldspathoid solutions, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 256–274.

    Article  Google Scholar 

  53. Safonov, O.G. and Aranovich, L.Ya., Alkali control of high-grade metamorphism and granitization, Geosci. Front., 2014, vol. 5, pp. 711–727.

    Article  Google Scholar 

  54. Safonov, O.G. and Kosova, S.A., Fluid–mineral reactions and melting of orthopyroxene–cordierite–biotite gneiss in the presence of H2O–CO2–NaCl and H2O–CO2–KCl fluids under parameters of granulite-facies metamorphism, Petrology, 2017, vol. 25, no. 5, pp. 458–485.

    Article  Google Scholar 

  55. Safonov, O.G., Kosova, S.A., and van Reenen, D.D., Interaction of biotite–amphibole gneiss with the H2O–CO2–(K, Na)Cl fluids at 5.5 kbar and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust, J. Petrol., 2014, vol. 55, pp. 2419–2456.

    Article  Google Scholar 

  56. Savelyeva, V.B., Bazarova, E.P., Sharygin, V.V., et al., Altered rocks of the Onguren carbonatite complex in the Western Tansbaikal region: geochemistry and composition of accessory minerals, Geol. Ore Deposits, 2017, vol. 59, no. 4, pp. 315–340.

    Article  Google Scholar 

  57. Schneider, J.B. and Jenkins, D.M., Stability of sodalite relative to nepheline in NaCl–H2O brines at 750°C: implications for hydrothermal formation of sodalite, Can. Mineral., 2020, vol. 58, no. 1, pp. 3–18.

    Article  Google Scholar 

  58. Schumacher, J.C., The estimation of ferric iron in electron microprobe analysis of amphiboles, Eur. J. Mineral., 1997, vol. 9, pp. 643–651.

    Google Scholar 

  59. Shand, S.J., Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits with a Chapter On Meteorites,: London: Thomas Murby and Co., 1943.

    Google Scholar 

  60. Sharp, Z.D., Helefrich, G.R., Bohlen, S.R., and Essene, E.J., The stability of sodalite in the system NaAlSiO4–NaCl, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 1943–1954.

    Article  Google Scholar 

  61. Sklyarov, E.V., Gladkochub, D.P., Kotov, A.B., et al., Genesis of the Katugin rare-metal ore deposit: magmatism versus metasomatism, Russ. J. Pac. Geol., 2016, vol. 10, no. 3, pp. 155–167.

    Article  Google Scholar 

  62. Spear, F.S., Hazen, R.M., and Rumble, D., Wonesite: a new rock forming silicate from the Post Pond volcanics, Vermont, Am. Mineral., 1981, vol. 66, pp. 100–105.

    Google Scholar 

  63. Starikova, A.E., Mineralogy of Metasomatic Rocks of the Tazheran Massif (Western Baikal Region), Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Novosibirsk: IGM SO RAN, 2013.

  64. Touret, J.L.R., Mantle to lower-crust fluid/melt transfer through granulite metamorphism, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1052–1062.

    Article  Google Scholar 

  65. Wolf, M.B. and Welley, P.J., Some results of experimental study of dehydration meltin of amphibolite at 10 kbar, Geol. Geofiz., 1993, vol. 34, no. 12, pp. 100–115.

    Google Scholar 

  66. Webster, J.D., Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and applications for ore metal transport, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1017–1029.

    Article  Google Scholar 

  67. Wellman, T.R., The stability of sodalite in a synthetic syenite plus aqueous chloride fluid system, J. Petrol., 1970, vol. 11, pp. 49–71.

    Article  Google Scholar 

  68. Zharikov, V.A., Effects of alkali regimes on the parageneses of igneous rocks, Petrology, 1999, vol. 7, no. 4, pp. 324–338.

    Google Scholar 

  69. Zyryanov, V.N., Perchuk, L.L., and Podlessky, K.K., Nepheline–alkali feldspar equilibria: I. Experimental data and thermodynamic calculations, J. Petrol., 1978, vol. 19.

Download references

ACKNOWLEDGMENTS

The authors thank L.Ya. Aranovich (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) for valuable comments that led us to improve the manuscript.

Funding

This study was carried out under government-financed research projects FMUF-2022-0004 and 1021051302305-5-1.5.2;1.5.4 for Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Khodorevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodorevskaya, L.I., Varlamov, D.A. & Safonov, O.G. Experimental Investigation into Interaction between Amphibole and Highly Saline H2O–NaCl–KCl Fluid at 750°C, 700 MPa: Implications to Alkaline Metasomatism of Amphibole Rocks. Petrology 31, 394–412 (2023). https://doi.org/10.1134/S0869591123040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123040057

Keywords:

Navigation