Skip to main content
Log in

Genesis of the Paleoproterozoic Rare-Metal Granites of the Katugin Massif

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite (Bt) and biotite–riebeckite (Bt–Rbk) granites of the western block of the massif; (2) biotite–arfvedsonite (Bt–Arf) granites of the eastern block; and (3) arfvedsonite (Arf), aegirine–arfvedsonite (Aeg–Arf), and aegirine (Aeg) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na2O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf, Aeg–Arf, and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf, Aeg–Arf, and Aeg granites enriched in ore minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agangi, A., Kamenetsky, V.S., and McPhie, J., The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range volcanics, South Australia, Chem. Geol., 2010, vol. 273, pp. 314–325.

    Google Scholar 

  • Arkhangel’skaya, V.V., Kazanskii, V.I., Prokhorov, K.V., and Sobachenko, V.N., Geological structure, zoning, and conditions of formation of the Katugin Ta–Nb–Zr-deposit (Chara–Udokan district, East Siberia), Geol. Rudn. Mestorozhd., 1993, vol. 35, no. 2, pp. 115–131.

    Google Scholar 

  • Arkhangel’skaya, V.V., Ryabtsev, V.V., and Shuriga, T.N., Geologic structure and mineralogy of the tantalum deposits of Russia, Mineral’noe Syr’e (Mineral Resources), Moscow: VIMS, 2012, vol. 25.

  • Bonin, B., A-type granites and related rocks: evolution of a concept, problems and prospects, Lithos, 2007, vol. 97, pp. 1–29.

    Article  Google Scholar 

  • Bykov, Yu.V. and Arkhangel’skaya, V.V., Katugin raremetal deposit, in Mestorozhdeniya Zabaikal’ya (Deposits of Transbaikalia), Laverov, N.P. Ed., Moscow: Geoinformmark, 1995, vol. 1, book 2, pp. 76–85.

    Google Scholar 

  • Dostal, J. and Shellnutt, J.G., Origin of peralkaline granites of the Jurassic Bokan Mountain Complex (southeastern Alaska) hosting rare metal mineralization, Int. Geol. Rev., 2016, vol. 58, pp. 1–13.

    Article  Google Scholar 

  • Dostal, J., Kontak, D.J., and Karl, S.M., The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization, Lithos, 2014, vol. 202-203, pp. 395–412.

    Article  Google Scholar 

  • Eby, N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.

    Article  Google Scholar 

  • Frost, B.R. and Frost, C.D., A geochemical classification for feldspathic rocks, J. Petrol., 2008, vol. 49, pp. 1955–1969.

    Article  Google Scholar 

  • Frost, C.D. and Frost, B.R., On ferroan (A-type) granites: their compositional variability and modes of origin, J. Petrol., 2011, vol. 52, pp. 39–53.

    Article  Google Scholar 

  • Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  • Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V. et al., The unique Katugin rare-metal deposit (southern Siberian Craton): an age and genesis constrains, Ore Geol. Rev., (in press).

  • Gramenitskii, E.N., Shchekina, T.I., and Devyatova, V.N., Fazovye otnosheniya vo ftorsoderzhashchei granitnoi i nefelinsienitovoi sistemakh i raspredelenie elementov mezhdu fazami (Phase Relations in F-bearing Granite and Nepheline-Syenite Systems and Element Partitioning between Phases), Moscow: GEOS, 2005.

    Google Scholar 

  • Grebennikov, A.V., A-type granites and related rocks: problems of identification, petrogenesis, and classification, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1356–1373.

    Article  Google Scholar 

  • Huang, H., Zhang, Z., Santosh, M., and Zhang, D., Geochronology, geochemistry and metallogenic implications of the Boziguo’er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China, Ore Geol. Rev., 2014, vol. 61, p. 157–174.

    Article  Google Scholar 

  • Kotov, A.B., Vladykin, N.V., Larin, A.M., et al., New data on the age of ore formation in the unique Katugin raremetal deposit (Aldan Shield), Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 663–667.

    Article  Google Scholar 

  • Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., Age of the Katugin Ta–Nb deposit, Aldan–Stanovoi Shield: evidence for the identification of the global rare metal metallogenic epoch, Dokl. Earth Sci., 2002, vol. 383, no. 6. pp. 336–339.

    Google Scholar 

  • Larin, A.M., Kotov, A.B., Velikoslavinskii, S.D., et al., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments, Petrology, 2012, vol. 20, no. 3, pp. 218–239.

    Article  Google Scholar 

  • Larin, A.M., Kotov, A.B., Vladykin, N.V., et al., Rare metal granites of the Katugin Complex (Aldan Shield): sources and geodynamic formation settings, Dokl. Earth Sci. 2015, vol. 464, no. 1, pp. 889–893.

    Article  Google Scholar 

  • Levashova, E.V., Skublov, S.G., Marin, Yu.B., et al., Trace elements in zircon from the rocks of the Katugin rare-metal deposit, Zap. Vseross. Mineral, O-va, 2014, vol. 143, no. 5, pp. 17–31.

    Google Scholar 

  • Manning, D.A.C., The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb, Contrib. Mineral. Petrol., 1981, vol. 76, pp. 206–215.

    Article  Google Scholar 

  • Markl, G., Marks, M., Schwinn, G., and Sommer, H., Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland, J. Petrol., 2001, vol. 42, pp. 2231–2258.

    Article  Google Scholar 

  • Osokin, E.D., Altukhov, E.N., and Kravchenko, S.M., Criteria and formation and localization conditions of giant rare element deposits, Geol. Ore Deposits, 2000, vol. 42, no. 4, pp. 351–357.

    Google Scholar 

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  • Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), Bogatikov, O.A, Petrov, O.V, and Morozov, A.F, Eds., Moscow: VSEGEI, 2009.

    Google Scholar 

  • Podkovyrov, V.N., Kotov, A.B., Larin, A.M., et al., Sources and provenances of Lower Proterozoic terrigenous rocks of the Udokan Group, southern Kodar–Udokan Depression: results of Sm–Nd isotopic investigations, Dokl. Earth Sci., 2006, vol. 408, pp. 518–522.

    Article  Google Scholar 

  • Prokhorov, K.V. and Sobachenko, V.N., Structural-petrological and geochemical conditions of formation of ore-bearing high-temperature sodic metasomatites, Vnutrennee stroenie rudonosnykh dokembriiskikh razlomov (Internal Structure of Precambrian Ore-Bearing Faults), Tomson, I.N., Ed., Moscow: Nauka, pp. 94–121.

  • Ryabtsev, V.V., Chistov, L.B., and Shuriga, T.N., Tantalum ores of Russia: state and prospects of development of the mineral-raw base, Mineral’noe syr’e. Seriya geologo-ekonomicheskaya (Mineral Raw Material. Geological–Economic Series), Moscow: VIMS, 2006, no. 21.

    Google Scholar 

  • Savel’eva, V.B., Bazarova, E.P., Khromova, E.A., and Kanakin, S.V., Fluorides and fluorcarbonates in the rocks of the Katugin Complex (East Siberia), Zap. Vseross. Mineral. O-va, 2016, vol. 145, no. 2, pp. 1–19.

    Google Scholar 

  • Scaillet, B. and Macdonald, R., Phase relations of peralkaline silicic magmas and petrogenetic implications, J. Petrol., 2001, vol. 42, pp. 825–845.

    Article  Google Scholar 

  • Schonenberger, J., Kohler, J., and Markl, G., REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland, Chem. Geol., 2008, vol. 247, pp. 16–35.

    Article  Google Scholar 

  • Sharpenok, L.N., Kostin A.E., and Kukharenko, E.A., TAS-diagram of total alkali–silica for the chemical classification and identification of plutonic rocks, Regional. Geol. Metallogen., 2013, no. 56, pp. 40–50.

    Google Scholar 

  • Sharygin, V.V., Zubkova, N.V., Pekov, I.V., et al., Lithiumcontaining Na–Fe-amphibole from cryolite rocks of the Katugin rare-metal deposit (Transbaikalia, Russia): chemical features and crystal structure, Russ. Geol. Geophys., 2016, vol. 57, no. 8, pp. 1511–1526.

    Google Scholar 

  • Shchekina, T.I., Gramenitskii, E.N., and Alfer’eva, Ya.O., Leucocratic magmatic melts with the maximum fluorine concentrations: experiment and relations in nature, Petrology, 2013, vol. 21, no. 5, pp. 454–470.

    Article  Google Scholar 

  • Sklyarov, E.V., Starikova, A.E., Sharygin, V.V., and Khromova, E.A., Metasomatic nature of mineralization of the Katugin rare-metal deposit: pro and contra, Geologiya i mineral’no-syr’evye resursy severo-vostoka Rossii. Vserossiiskaya nauchno-prakticheskaya konferentsiya (Geology and Mineral Resources of Northeastern Russia. All-Russian Practical Conference), Yakutsk, 2015, pp. 446–448.

    Google Scholar 

  • Sklyarov, E.V., Gladkochub, D.P., Kotov, A.B., et al., Genesis of the Katugin rare-metal ore deposit: magmatism versus metasomatism, Russ. J. Pac. Geol., 2016, vol. 10, no. 3, pp. 155–167.

    Article  Google Scholar 

  • Starikova, A.E., Sharygin, V.V., and Sklyarov, E.V. Badominant fluoroaluminates from the Katugin rare-metal deposit (Transbaikalia, Russia), Dokl. Earth Sci., 2017, vol. 472, pp. 67–71.

    Article  Google Scholar 

  • Tuttle, O.F. and Bowen, N.L., Origin of granite in the light of experimental studies in the system NaAiSi3O8–KAlSi3O8–SiO2–H2O, Geol. Soc. Am., 1958, vol. 74, pp. 182–234.

    Google Scholar 

  • Wakita, H., Schmitt, R.A., and Rey, P., Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples, Proceedings of the Apollo 11 Lunar Sci. Conf., New York, USA (Pergamon, New York, 1970), pp. 1685–1717.

    Google Scholar 

  • Webster, J.D., Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt, Contrib. Mineral. Petrol., 1990, vol. 104, p. 424–438.

    Article  Google Scholar 

  • Webster, J.D., Holloway, J.R., and Hervig, R.L., Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt, Econ. Geol., 1989, vol. 84, pp. 116–134.

    Article  Google Scholar 

  • Webster, J., Thomas, R., Forster, H.J., et al., Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany, Mineral. Deposita, 2004, vol. 39, pp. 452–472.

    Google Scholar 

  • Whalen, J.B., Currie, K.L., and Chappel, B.W., A-type granites: geochemical characteristics and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  • Xiong, X.-L., Zhao, Z.-H., Zhu, J.-C., and Rao, B., Phase relations in albite granite–H2O–HF system and their petrogenetic applications, Geochem. J., 1999, vol. 33, p. 199–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Donskaya.

Additional information

Original Russian Text © T.V. Donskaya, D.P. Gladkochub, E.V. Sklyarov, A.B. Kotov, A.M. Larin, A.E. Starikova, A.M. Mazukabzov, E.V. Tolmacheva, S.D. Velikoslavinskii, 2018, published in Petrologiya, 2018, Vol. 26, No. 1, pp. 52–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskaya, T.V., Gladkochub, D.P., Sklyarov, E.V. et al. Genesis of the Paleoproterozoic Rare-Metal Granites of the Katugin Massif. Petrology 26, 47–64 (2018). https://doi.org/10.1134/S0869591118010022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118010022

Navigation