Skip to main content
Log in

Devonian volcanics in the Voronezh Crystalline Massif, East European Platform: Evolution of the melts and characteristics of crustal contamination

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The rift system of the Dnieper–Donets trough (DDT) is the largest magmatic area in the East European Platform. Basalts of the Voronezh Crystalline Massif (VCM) are spatially constrained to the eastern shoulder of DDT and occur far away (at a distance of 150–200 km) from the rift axis. The rocks are hosted in the Paleoproterozoic Vorontsovskii terrane and are grouped in a few fields within an area of 200 × 100 km. Basalts at most of the fields were erupted at the boundary between mid- and late Frasnian time in the Late Devonian and can be studied exclusively in core material recovered by boreholes. Newly obtained mineralogical, geochemical, and isotopic-geochemical data show that the Devonian volcanic rocks in VCM are tholeiites (Bas) and basaltic andesites/andesites (ABas). The geological section was examined most exhaustively in the Novokhopersk area (Borehole 175). The bottom of the vertical section is made up of basaltic andesites and andesites (ABas) (thickness 34 m), which rest on an eroded surface of late Frasnian sandstones. The rocks are overlain by a thin (8 m thick) tholeiite sheet (Bas2), which gives way to ABas (13 m) upsection. The top portion of the vertical section is composed of tholeiites with petrography and geochemical evidence of crustal contamination (Bas1) (apparent thickness 5 m). Geochemical parameters of Bas (mg# 42–52 at SiO2 47–51 wt %) are typical of continental tholeiites. The rocks have (87Sr/86Sr)0 = 0.7043–0.7048 and εNd(372) = 2.1–3.5. ABas (mg# 28–31 at SiO2 52–60 wt %) are enriched in Y (48 ppm), and possess Nb/Nb* = 0.7–0.8 and high Zn/Cu = 1.9–2.3. The rocks have (87Sr/86Sr)0 = 0.7034–0.7048 and Nd–εNd(372) = 0.1. Some portions of Bas melts assimilated the upper crustal material, which was similar to Paleoproterozoic granites, and ABas are contaminated in the lower crust with derivatives of Early Cambrian alkaline mafic melts. Petrographic data and simulations of fractional crystallization show that olivine and high-Mg clinopyroxene were the first to crystallize from the melt. After this, clinopyroxene and plagioclase simultaneously crystallized at temperatures from 1070 to 1020°C in Bas and at 1040–900°C at f O2 below QFM + 1 in ABas. The source of ABas was likely a network of hornblendite or amphibole pyroxenite veins in peridotite in the lithospheric mantle or amphibolized peridotite cumulate in an underplating zone; and Bas were derived from spinel peridotites of an asthenospheric diapir. The setting of the basalts relative to the DDT axis and the asymmetric zoning of magmatism in DDT (with kimberlites and other deep rocks constrained to the western shoulder and tholeiites occurring in the axial part of the rift and its eastern shoulder) can be explained by the model of an asymmetric rift structure with a translithospheric detachment gently dipping beneath VCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmedov, A.M., Klyuev, N.K., Naumkin, A.N., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Tsentral’no- Evropeiskaya. List M-37—Voronezh. Ob”yasnitel’naya zapiska (State Geological map of the Russian Federation on a 1: 1000000 (3rd Generation). Central- European Series. Sheet M-37—Voronezh. Explanatory Note), St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2011.

    Google Scholar 

  2. Andrews, B.J., Gardner, J.E., and Housh, T.B, Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts, J. Volcanol. Geotherm. Res., 2008, vol. 175, no. 4, pp. 415–426.

    Google Scholar 

  3. Ariskin, A.A. and Barmina, G.S, Comagmat: development of a magma crystallization model and its petrological application, Geochem. Int., 2004, vol. 42, no. Suppl. 1, pp. 1–157.

    Google Scholar 

  4. Arzamastsev, A.A. and Wu, F.Ya., U–Pb Geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic- alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  5. Ayalewa, D., Jungb, S., Romer, R.L., et al., Petrogenesis and origin of modern Ethiopian rift basalts: constraints from isotope and trace element geochemistry, Lithos, 2016, vol. 258–259, pp. 1–14.

    Article  Google Scholar 

  6. Baluev, A.S., Continental Rifting of the Northern East European Platform in the Neogene: Geology, History of Evolution, and Comparative Analysis, Extended Abstract of Candidate (Geol.-Min) Dissertation, Moscow: GIN RAN, 2013.

    Google Scholar 

  7. Baluev, A.S. and Moralev, V.M, Structural control and geodynamic conditions of within-plate magmatism in the East European Platform, Izv. Vyssh. Uchebn. Zaved. Ser. Geol. Razv., 2001, no. 1, pp. 13–30.

    Google Scholar 

  8. Beard, J.S., Crystal–melt separation and the development of isotopic heterogeneities in hybrid magmas, J. Petrol., 2008, vol. 49, no. 5, pp. 1027–1041.

    Article  Google Scholar 

  9. Beard, J.S., Ragland, P.C., and Crawford, M.L, Reactive bulk assimilation: a model for crust–mantle mixing in silicic magmas, Geology, 2005, vol. 33, no. 8, pp. 681–684.

    Article  Google Scholar 

  10. Beccaluva, L., Bianchini, G., Natali, C., and Siena, F, Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau, J. Petrol., 2009, pp. 1377–1403.

    Google Scholar 

  11. Birina, L.M, On traces of magmatic activity of the northern Moscow Syneclise, Dokl. Akad. Nauk SSSR, 1953, vol. 88, no. 5, pp. 909–912.

    Google Scholar 

  12. Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., East European Craton, in Encyclopedia of Geology, Richard, C., Selley, L., Cocks, R.M., and Plimer, I.R., Eds., Amsterdam, London: Elsevier Academic, 2016, pp. 34–49.

    Google Scholar 

  13. Buturlinov, N.V, Magmatism of the Graben-Like Troughs of the Southern East European Platform in Phanerozoic, Doctoral (Geol.-Min.) Dissertation, Donetsk: Politekhn. Inst., 1979.

    Google Scholar 

  14. Bykov, I.N, On platform magmatic formations and inferred stages of kimberlite magmatism at the Voronezh anteclise, in Voprosy geologii i metallogenii dokembriya Voronezhskogo kristallicheskogo massiva (Problems of the Precambrian Geology and Metallogeny of the Voronezh Crystalline Massif), Voronezh: Voronezhsk. Univ., 1974, pp. 36–40.

    Google Scholar 

  15. Bykov, I.N., Verkhnedevonskie bazal’ty yugo-vostochnoi chasti Voronezhskoi anteklizy (Upper Devonian basalts of the Southeastern Voronezh Anteclise), Voronezh: Voronezhsk. Univ., 1975.

    Google Scholar 

  16. Bykov, I.N., Upper Devonian volcanism of the southeastern Voronezh anteclise, in Bazit-giperbazitovyi magmatizm i minerageniya yuga Vostochno-Evropeiskoi platformy (Basite–Hyperbasite Magmatism and Metallogeny of the Southern East European Platform), Gon’shakova, V.I., Ed., Moscow: Nedra, 1973, pp. 158–171.

    Google Scholar 

  17. Bykov, I.N., Zelenshchikov, G.V., and Raskatova, L.G, On the age of basalts of the eastern Voronezh anteclise, Izv. Vyssh. Uchebn. Zaved. Geol. Razved., 1972, no. 7, pp. 32–38.

    Google Scholar 

  18. Chalot-Prat, F., Tikhomirov, P., and Saintot, A, Late Devonian and Triassic basalts from the southern continental margin of the East European Platform, tracers of single heterogeneous lithospheric mantle source, J. Earth Syst. Sci., 2007, no. 6, pp. 469–495.

    Google Scholar 

  19. Chernyshov, N.M., Bayanova, T.B., Al’bekov, A.Yu., and Levkovich, N.V, New data on the age of gabbro–dolerite intrusions of the trap formation in the Khoper Megablock, Voronezh Crystalline Massif, Central Russia, Dokl. Earth Sci., 2001, vol. 381, no. 8, pp. 889–891.

    Google Scholar 

  20. Chiaradia, M., Müntener, O., and Beate, B, Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of Ecuador), J. Petrol., 2011, vol. 52, no. 6, pp. 1107–1141.

    Google Scholar 

  21. Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X, The ICS international chronostratigraphic chart, Episodes, 2013, vol. 36, no. 3, pp. 199–204.

    Google Scholar 

  22. Dai, L.-Q., Zhao, Z.-F., and Zheng, Y.-F., Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts, Geochem. Geophys. Geosyst., 2014, vol. 15, pp. 3762–3779.

    Article  Google Scholar 

  23. Davidson, J., Turner, S., and Plank, T., Dy/Dy*: variation arising from mantle sources and petrogenetic processes, J. Petrol., 2013, vol. 54, no. 3, pp. 525–537.

    Article  Google Scholar 

  24. DOBREfraction’99 Working Group et al. DOBREfraction’ 99—Velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine), Tectonophysics, 2003, vol. 371, nos. 1–4, pp. 81–110.

  25. Ellern, S.S., Valeev, R.N., and Sitdikov, B.S, Some regularities in the distribution of Devonian volcanic rocks on eastern Russian Platform, Sov. Geologiya, 1963, no. 8, pp. 66–77.

    Google Scholar 

  26. Erdmann, S., Scaillet, B., and Kellett, D.A, Xenocryst assimilation and formation of peritectic crystals during magma contamination: an experimental study, J. Volcanol. Geotherm. Res., 2010, vol. 198, no. 3, pp. 355–367.

    Article  Google Scholar 

  27. Erdmann, S., Scaillet, B., and Kellett, D.A, Textures of peritectic crystals as guides to reactive minerals in magmatic systems: new insights from melting experiments, J. Petrol., 2012, vol. 53, no. 11, pp. 2231–2258.

    Article  Google Scholar 

  28. Furman, T. and Graham, D, Erosion of lithospheric mantle beneath the East African rift system: geochemical evidence from the Kivu volcanic province, Lithos, 1999, vol. 48, pp. 237–262.

    Article  Google Scholar 

  29. Geologiya Belarusi (Geology of Belarus), Makhnach, A.S., Ed., Minsk: Inst. Geol. Nauk NAN Belarus, 2001.

  30. Gladkikh, V.S, Petrolchemical and geochemical features of alkaline olivine and tholeiite basalts of the Voronezh anteclise, in Geologiya, petrologiya i metallogeniya kristallicheskikh obrazovanii Vostochno-Evropeiskoi platform (Geology, Petrology, and Metallogeny of the Crystalline Rocks of the East European Platform), Moscow: Nedra, 1976, vol. 2, pp. 143–146.

    Google Scholar 

  31. Gon’shakova, V.I. and Buturlinov, N.V., Paleozoic–Mesozoic magmatic formations of the East European Platform cover, in Geologiya, petrologiya i metallogeniya kristallicheskikh obrazovanii Vostochno-Evropeiskoi platform (Geology, Petrology, and Metallogeny of the Crystalline Rocks of the East European Platform), Moscow: Nedra, 1976, vol. 2, pp. 21–29.

    Google Scholar 

  32. Il’ina, N.S., Ivanova, T.D., and Frukht, D.L, On problem of magmatic acctivity in the Paleozoic deposits of the northern Moscow syneclise, Dokl. Akad. Nauk SSSR, 1967, vol. 177, no. 2, pp. 404–407.

    Google Scholar 

  33. Kheraskova, T.N., Volozh, Yu.A., Antipov, M.P., et al., Correlation of Late Precambrian and Paleozoic events in the East European Platform and the adjacent Paleooceanic domains, Geotectonics, 2015, vol. 49, no. 1, pp. 27–52.

    Article  Google Scholar 

  34. Kieffer, B., Arndt, N., Lapierre, H., et al., Flood and shield basalts from Ethiopia: magmas from the African superswell, J. Petrol., 2004, vol. 45, pp. 793–834.

    Article  Google Scholar 

  35. Kimberlitovye porody Priazov’ya (Kimberlite Rocks of the Azov Region), Kononova, V.A., Ed., Moscow: Nauka, 1978.

  36. Kusznir, N.J., Kovkhuto, A., and Stephenson, R.A, Synrift evolution of the Pripyat trough: constraints from structural and stratigraphic modeling, Tectonophysics, 1996, vol. 268, nos. 1–4, pp. 221–236.

    Article  Google Scholar 

  37. Larionova, Yu.O., Sazonova L.V., Lebedeva N.M., et al., Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite, Petrology, 2016, vol. 24, no. 6, pp. 562–593.

    Article  Google Scholar 

  38. Le Roux, V., Lee, C.-T.A., and Turner, S.J., Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle, Geochim. Cosmochim Acta, 2010, vol. 74, pp. 2779–2796.

    Article  Google Scholar 

  39. Le Roux, V., Dasgupta, R., and Lee, C.-T.A., Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting, Earth Planet. Sci. Lett., 2011, vol. 307, pp. 395–408.

    Article  Google Scholar 

  40. Lyngsie S.B., Thybo H., and Lang R. Rifting and lower crustal reflectivity: A case study of the intracratonic Dniepr-Donets rift zone, Ukraine, J. Geophys. Res., 2007, vol. 112, no. 12, pp. B12402.

  41. Lister, G., Etheridge, M., and Symonds, P, Detachment faulting and the evolution of passive continental margins, Geology, 1986, vol. 14, no. 3, pp. 246–250.

    Article  Google Scholar 

  42. Lomot’, K.I, New data on traces of volcanic activity in the Paleozoic deposits of “Second Baku”, Dokl. Akad. Nauk SSSR, 1954, vol. 94, no. 4, pp. 75–78.

    Google Scholar 

  43. Lyashkevich, Z.M, Character and activity of volcanism of the ancient Dnieper–Donets rift, in Sovremennye problemy paleovulkanologii (Modern problems of Paleovolcanology), Moscow: Nauka, 1985, pp. 61–68.

    Google Scholar 

  44. Lyashkevich, Z.M. and Zav’yalova, T.V., Vulkanizm Dneprovo-Donetskoi vpadiny (Volcanism of the Dnieper–Donets Basin), Kiev: Naukova Dumka, 1997.

    Google Scholar 

  45. McCanta, M.C., Rutherford, M.J., and Hammer, J.E., Pre-eruptive and syn-eruptive conditions in the Black Butte, California dacite: insight into crystallization kinetics in a silicic magma system, J. Volcanol. Geotherm. Res., 2007, vol. 160, no. 3, pp. 263–284.

    Article  Google Scholar 

  46. Mikhailova, N.A, On new traces of the volcanic activity in the Devonian of the Volga–Ural area, Dokl. Akad. Nauk SSSR, 1958, vol. 120, no. 2, pp. 390–392.

    Google Scholar 

  47. Mints, M.V., Bush, W.A., and Ageev, S.N., Bryansk–Kursk–Voronezh intracontinental collisional orogeny (East European Craton), Geodynam. Tectonophys., 2014, vol. 5, no. 3, pp. 717–742.

    Article  Google Scholar 

  48. Molotkov, S.P. and Al’bekov, A.Yu., First native copper occurrences related to the Upper Devonian basaltic volcanism of the southeastern Voronezh anteclise: problems of the metallurgic raw base of Mosolovsky settlement of the Bronze Age in the Don middle reach basin, Vestn. Voronezhsk. Univ., Geol., 2004, no. 1, pp. 116–130.

    Google Scholar 

  49. Novikova, A.S, On origin of the Kazan–Sergiev trough, Izv. Akad. Nauk SSSR, Ser. Geol., 1959, no. 10, pp. 28–41.

    Google Scholar 

  50. Pertermann, M. and Hirschmann, M.M, Partial melting behavior of MORB-like pyroxenite and implications for the role of garnet during basalt petrogenesis, J. Geophys. Res., 2003, vol. 108, no. 2, pp. 2125–2142.

    Google Scholar 

  51. Pervov, V.A., Kononova, V.A., Ilupin, I.P., and Simakov, S.K., P–T Parameters of formation of rocks included as xenoliths in kimberlites of Middle Timan, Dokl. Earth Sci., 2002, vol. 386, no. 7, pp. 867–869.

  52. Pervov, V.A., Nikitin, E.A., and Levsky, L.K, Ultramafic alkaline volcanic rocks of the Zhlobin Field (Belarus): sources and evolution of magmas, Petrology, 2004, vol. 12, no. 4, pp. 312–329.

    Google Scholar 

  53. Pick, R., Deniel, C., Coulon, C., et al., The northwestern Ethiopian plateau flood basalts: classification and spatial distribution of magma types, J. Volcanol. Geotherm. Res., 1998, vol. 81, pp. 91–111.

    Article  Google Scholar 

  54. Polyakov, V.A. and Shurunov, M.V, Devonian volcanism of the Gorbunovsky graben-like trough, Kuibyshev district, Izv. Akad. Nauk SSSR. Ser. Geol., 1985, no. 6, pp. 127–130.

    Google Scholar 

  55. Qian, Q. and Hermann, J, Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation, Contrib. Mineral Petrol., 2013, vol. 165, no. 6, pp. 1195–1224.

    Article  Google Scholar 

  56. Rosenthal, A., Foley, S.F., Pearson, D.G., et al., Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 236–248.

    Article  Google Scholar 

  57. Rudnick, R.L. and Gao, S, Composition of the continental crust, Treatise on Geochemistry, 2003, vol. 3, pp. 1–64.

    Article  Google Scholar 

  58. Rutherford, M.J. and Hill, P.M, Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions, J. Geophys. Res., 1993, vol. 80, pp. 19667–19685.

    Article  Google Scholar 

  59. Savko, K.A. and Bocharov, V.L, Petrochemistry of gabbrodolerites in the eastern Voronezh Crystalline Massif, Izv. Vyssh. Uchebn. Zaved. Geol. Razved., 1988, no. 7, pp. 42–51.

    Google Scholar 

  60. Savko, K.A., Samsonov, A.V., Larionov, A.N., et al., Paleoproterozoic A- and S-granites in the eastern Voronezh Crystalline Massif: geochronology, petrogenesis, and tectonic setting of origin, Petrology, 2014, vol. 22, no. 3, pp. 205–233.

    Google Scholar 

  61. Shchipansky, A.A., Samsonov, A.V., Petrova, A.Yu., and Larionova, Yu.O, Geodynamics of the eastern margin of Sarmatia in the Paleoproterozoic, Geotectonics, 2007, vol. 41, no. 1, pp. 38–62.

    Article  Google Scholar 

  62. Sheremet, E.M., Kozar’, N.A., Strekozov, S.N., et al., Poiski almazov v Priazovskom bloke Ukrainskogo shchita (Search for Diamonds in the Azov Region Block of the Ukrainian Shield), Antsiferov, A.V., Ed., Donetsk: Noulidzh, 2014.

  63. Shevtsov, S.I. and Kiligina, M.L, On traces of volcanic activity in the Devonian deposits of the northern Kirovsk district, Dokl. Akad. Nauk SSSR, 1961, vol. 139, no. 3, pp. 696–698.

    Google Scholar 

  64. Skryabin, V.Yu., Savko, K.A., Skryabin, M.V., and Terent’ev, R.A, Cambrian magmatic activation of the East European Platform, Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 822–827.

    Article  Google Scholar 

  65. Sorbadere, F., Schiano, P., and Métrich, N, Constraints on the origin of nephelinenormative primitive magmas in island arcs, J. Petrol., 2013, vol. 54, no. 2, pp. 215–233.

    Article  Google Scholar 

  66. Sorokhtin, O.G. and Sorokhtin, N.O, Subduction mechanism of diamond origin, in Geologiya i poleznye iskopaemye mirovogo okeana (Geology and Mineral Resources of the Ocean), 2006, vol. 1, pp. 5–36.

    Google Scholar 

  67. Sun, S.S. and McDonough, W.F, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Oceanic Basins, Geol. Soc. Sp. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  68. Tiepolo, M., Tribuzio, R., and Langone, A, High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy), J. Petrol., 2011, vol. 52, no. 5, pp. 1011–1045.

    Article  Google Scholar 

  69. Tolstikhin, I.N., Kamensky, I.L., Marty, B., et al., Rare gas isotopes and parent trace elements in ultrabasic–alkaline–carbonatite complexes, Kola Peninsula: identification of lower mantle plume component, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 881–901.

    Google Scholar 

  70. Torsvik, T.H., Steinbergerd, B., Gurnise, M., and Gainab, G, Plate tectonic and net lithosphere rotation over the past 150 My, Earth Planet. Sci. Lett., 2010, vol. 291, Iss. 1–4, pp. 106–112.

    Article  Google Scholar 

  71. Veretennikov, N.V., Korzun, V.P., Makhnach, A.S., and Laptsevich, A.G, Upper Devonian volcanogenic rocks of the Uvarovichi area, Dokl. Nats. Akad. Nauk Belorus., 2001, vol. 45, no. 1, pp. 100–102.

    Google Scholar 

  72. Wilson, M. and Lyashkevich, Z.M, Magmatism and the geodynamics of rifting of the Pripyat–Dnieper–Donets rift, East European platform, Tectonophysics, 1996, vol. 268, nos. 1–4, pp. 65–81.

    Article  Google Scholar 

  73. Yutkina E.V., Kononova V.A., Bogatikov O.A., et al., Kimberlites of Eastern Priazov’e (Ukraine) and geochemical characteristics of their sources, Petrology, 2004, vol. 12, no. 2, pp. 134–148.

    Google Scholar 

  74. Yutkina, E.V., Kononova, V.A., Kozar’, N.A., and Knyaz’kov, A.P., Sr–Nd isotopic and geochemical compositions of kimberlites from the Eastern Azov Region, their age, and nature of the lithospheric source, Dokl. Earth Sci., 2003, vol. 391, no. 1, pp. 751–754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yutkina.

Additional information

Original Russian Text © E.V. Yutkina, A.A. Nosova, L.V. Sazonova, Yu.O. Larionova, I.A. Kondrashov, L.V. Shumlyanskyy, A.Yu. Albekov, K.A. Savko, 2017, published in Petrologiya, 2017, Vol. 25, No. 3, pp. 233–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yutkina, E.V., Nosova, A.A., Sazonova, L.V. et al. Devonian volcanics in the Voronezh Crystalline Massif, East European Platform: Evolution of the melts and characteristics of crustal contamination. Petrology 25, 241–271 (2017). https://doi.org/10.1134/S0869591117020060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117020060

Navigation