Skip to main content
Log in

Possible serpentine relicts in lunar meteorites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Recent studies of lunar rocks showed that water could be an important component of lunar magmas. However, mineralogical signs of aqueous alteration of lunar minerals have not been found yet. Two peculiar objects were identified in the Dhofar 302 and 961 lunar meteorites. Their compositional features suggest that their formation could be related to serpentine dehydration. These objects consist of olivine-orthopyroxene intergrowths. In the Dhofar 961 object pyroxene lamellae in olivine resemble exsolution features, while its olivine contains up to 0.5 wt % P2O5. Phosphoran olivines have never been observed in lunar rocks. The findings of these objects suggest possible participation of serpenitinization and deserpentinization in lunar petrogenesis. Significant chemical differences of objects from the Dhofar 302 and 961 meteorites indicate that different kind of rocks were subjected to serpentinization. Unlike the Dhofar 302 object, the serpentine precursor of the Dhofar 961 object should be formed in a KREEP-bearing source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, S.O., Charnley, N.R., and Chinner, G.A., Phosphoran olivines from Pine Canyon, Piute Co., Utah, Mineral. Mag., 1998, vol. 62, pp. 265–269.

    Article  Google Scholar 

  • Akai, J. and Sekine, T., Shock effect experiments on serpentine and thermal metamorphic conditions in Antarctic carbonaceous chondrite, Proc. NIPR Symp. Antarct. Meteorites, 1994, vol. 7, pp. 101–109.

    Google Scholar 

  • Barnes, J.J., Franch, I.A., Anand, M., et al., Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using nanoSIMS, Chem. Geol., 2013, vol. 337-338, pp. 48–55.

    Article  Google Scholar 

  • Boesenberg, J.S., Ebel, D.S., and Hewins, R.H., An experimental study of phosphoran olivine and its significance in main group pallasites, 35th Lunar Planet. Sci. Conf., 2004, #1366.pdf.

    Google Scholar 

  • Brearley, A.J. and Jones, R.H., Chondritic meteorites, Rev. Mineral. Planet. Mater., 2003, vol. 36, pp. 3-01–3-370.

    Google Scholar 

  • Brindley, G.W. and Hayami, R., Mechanism of formation of forsterite and enstatite from serpentine, Mineral. Mag., 1965, vol. 35, pp. 189–195.

    Article  Google Scholar 

  • Brunet, F. and Chazot, G., Partitioning of phosphorus between olivine, clinopyroxene, and silicate glass in a spinel lherzolite xenolith from Yemen, Chem. Geol., 2001, vol. 176, pp. 51–72.

    Article  Google Scholar 

  • Buseck, P.R., Pallasite meteorites—mineralogy, petrology and geochemistry, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 711–740.

    Article  Google Scholar 

  • Buseck, P.R. and Clark, J., Zaisho—a pallasite containing pyroxene and phosphoran olivine, Mineral. Mag., 1984, vol. 48, pp. 229–235.

    Article  Google Scholar 

  • De Hoog, J.C.M., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, pp. 196–215.

    Article  Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Kurat, G., et al., New lunar meteorites from Oman: Dhofar 925, 960 and 961, 36th Lunar Planet. Sci. Conf, 2005, #1607.pdf.

    Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Brandstätter, F., and Ntaflos, T., Mineralogical evidence for the activity of lunar water, 36th Lunar Planet. Sci. Conf., 2014, #1087.pdf.

    Google Scholar 

  • Frondel, J.W., Lunar Mineralogy (Wiley, New York, 1975).

    Google Scholar 

  • Frost, B.R., On the stability of sulfides, oxides, and native metals in serpentinite, J. Petrol., 1985, vol. 26, pp. 31–63.

    Article  Google Scholar 

  • Goodrich, C.A., Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disco Island, Greenland, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1115–1126.

    Article  Google Scholar 

  • Gualtieri, A.F., Giacobbe, C., and Viti, C., The dehydroxylation of serpentine group minerals, Am. Mineral., 2012, vol. 97, pp. 666–680.

    Article  Google Scholar 

  • Hammond, N.P., Nimmo, F., and Korycansky, D., Hydrocode modeling of the South Pole Aitken Basin-forming impact, 40th Lunar Planet. Sci. Conf, 2009, #1455. pdf.

    Google Scholar 

  • Hauri, E.H., Weinreich, T., Saal, A.E., et al., High preeruptive water contents preserved in lunar melt inclusions, Science, 2011. doi: 10.1126/science.1204626.

    Google Scholar 

  • Hui, H., Peslier, A.H., Zhang, Y., and Neal, C.R., Water in lunar anorthosites and evidence for a wet early Moon, Nature Geosci., 2013, vol. 6, pp. 177–180.

    Article  Google Scholar 

  • Khisina, N.R., Wirth, R., and Nazarov, M.A., Lamellar pyroxene-spinel symplectites in lunar olivine from the Luna 24 regolith, Geochem. Int., 2011, vol. 49, no. 5, pp. 449–458.

    Article  Google Scholar 

  • Korotev, R.L., Zeigler, R.A., Jolliff, B.L., et al., Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron composition, Meteorit. Planet. Sci., 2009, vol. 44, pp. 1287–1322.

    Article  Google Scholar 

  • Laz’ko, E.E., Laputina, I.P., Sveshnikova, E.V., and Udovkina, N.G., Composition and petrology of Fragment 24182, in Lunnyi grunt iz Morya Krizisov (Regolith from Mare Crisium), Vinogradov, A.P., Ed., Moscow: Nauka, 1980.

    Google Scholar 

  • Liu, Y., Mosenfelder, J.L., Guan, Y., et al., SIMS analysis of water abundance in nominally anhydrous minerals in lunar basalts, 43rd Lunar Planet. Sci., 2012, #1866. CD-ROM.

    Google Scholar 

  • Mason, B., Melson, W.G., and Nelen, J., Spinel and hornblende in Apollo 14 fines, 3rd Lunar Sci. Conf., 1972, p. 512.

    Google Scholar 

  • Mitrofanov, I., Litvak, M., Sanin, A., et al., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. E00H27. doi:10.1029/2011JE003956.

    Google Scholar 

  • Morris, R.W., Taylor, G.J., Newsom, H.E., and Keil, K., Highly evolved and ultramafic lithologies from Apollo 14 soils, Proc 20th Lunar Planet. Sci., 1990, pp. 61–75.

    Google Scholar 

  • Nazarov, M.A., Demidova, S.I., Patchen, A., and Taylor, L.A., Dhofar 301, 302 and 303: three new lunar highland meteorites from Oman, 33rd Lunar Planet. Sci. Conf., 2002, #1293.pdf.

    Google Scholar 

  • Nazarov, M.A., Ntaflos, T., and Brandstätter, F., FeO/Mno ratios of lunar meteorite minerals, 40th Lunar Planet. Sci. Conf., 2009, #1059.pdf.

    Google Scholar 

  • Nazarov, M.A., Aranovich, L.Ya., Demidova, S.I., et al., Aluminous enstatites of lunar meteorites and deep-seated lunar rocks, Petrology, 2011, vol. 19, no. 1, pp. 13–25.

    Article  Google Scholar 

  • O’Hanley, D.S., Chernosky, D.S., and Wicks, F.J., The stability of lizardite and chrysotile, Can. Mineral., 1989, vol. 27, pp. 483–493.

    Google Scholar 

  • Padron-Navarta, J.A., Lopez Sanchez-Vizcaino V., Hermann J. et al., Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites, Lithos, 2013, vol. 178, pp. 186–196.

    Article  Google Scholar 

  • Petaev, M.I., Barsukova, L.D., Lipschutz, M.E., et al., The Divnoe meteorite: petrology, chemistry, oxygen isotopes and origin, Meteoritics, 1994, vol. 29, pp. 182–199.

    Article  Google Scholar 

  • Rietmeijer, F.J.M., Nuth, J.A., and Nelson, R.N., Laboratory hydration of condensed magnesiosilica smokes with implications for hydrated silicates in IDPs and comets, Meteorit. Planet. Sci, 2004, vol. 39, pp. 723–746.

    Article  Google Scholar 

  • Saal, A.E., Hauri, E.H., Lo, Cascio, M., et al., The volatile content of the lunar volcanic glasses: evidence for the presence of water in the Moon’s interior, Nature, 2008, vol. 454, pp. 192–195.

    Article  Google Scholar 

  • Saal, A.E., Hauri, E.H., Van Orman, J.A., and Rutherford, M.C., Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage, Science, 2013, vol. 340, pp. 1317–1320.

    Article  Google Scholar 

  • Shearer, C.K., Aaron, P.M., Burger, P.V., et al., Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in martian basalts: evidence from the distribution of phosphorus and vanadium valance state in olivine megacrysts, 44th Lunar Planet. Sci. Conf., 2013, #2326.pdf.

    Google Scholar 

  • Shervais, J.W., Taylor, L.A., Laul, J.C., and Smith, M.R., Pristine highland clasts in consortium breccia 14305: petrology and geochemistry, Proc. 20th Lunar Planet. Sci., J. Geophys. Res., 1984, pp. C25–C40.

    Google Scholar 

  • Tenthorey, E. and Cox, S.F., Reaction-enhanced permeability during serpentinite dehydration, Geology, 2003, vol. 31, pp. 921–924.

    Article  Google Scholar 

  • Trittschack, R., Dehydroxylation kinetics of the serpentine group minerals, GeoFocus, 2013, vol. 34.

  • Trommsdorff, V., Lopez Sanchez-Vizcaino, V., Gomez-Pugnaire, M.T., and Muntener, O., High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 139–148.

    Article  Google Scholar 

  • Ulmer, P. and Trommsdorff, V., Serpentine stability to mantle depths and subduction-related magmatism, Science, 1995, vol. 268, pp. 858–861.

    Article  Google Scholar 

  • Viti, C., Serpentine minerals discrimination by thermal analysis, Am. Mineral., 2010, vol. 95, pp. 631–638.

    Article  Google Scholar 

  • Warren, P.H., Jerde, E.A., and Kallemeyn, G.W., Pristine moon rocks: an alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities, Proc. 20th Lunar Planet. Sci., 1990, pp. 31–59.

    Google Scholar 

  • Warren, P.H. and Wasson, J.T., Effects of pressure on the crystallization of a “chondriric” magma ocean and implications for the bulk composition of the moon, Proc. 10th Lunar Planet. Sci., 1979, pp. 2051–2083.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Demidova.

Additional information

Original Russian Text © S.I. Demidova, M.A. Nazarov, T. Ntaflos, F. Brandstätter, 2015, published in Petrologiya, 2015, Vol. 23, No. 2, pp. 129–140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, S.I., Nazarov, M.A., Ntaflos, T. et al. Possible serpentine relicts in lunar meteorites. Petrology 23, 116–126 (2015). https://doi.org/10.1134/S0869591115020034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115020034

Keywords

Navigation