Skip to main content
Log in

Paleoproterozoic A- and S-granites in the eastern Voronezh Crystalline Massif: Geochronology, petrogenesis, and tectonic setting of origin

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The eastern part of the Voronezh Crystalline Massif hosts coeval S- and A-granitoids. The biotite-muscovite S-granites contain elevated concentrations of Si, Al, and alkalis (with K predominance) and relatively low concentrations of Ca, Mg, Ti, Sr, and Ba, show pronounced negative Eu anomalies, and have low concentrations of Y and HREE. The biotite A-granitoids are enriched in Fe, Ti, P, HFSE, REE and have strongly fractionated REE patterns with deep Eu minima. According to their Rb/Nb and Y/Nb ratios, these rocks are classified with group A2 of postcollisional granites. The SIMS zircon crystallization age of the granitoids lies within the range of 2050–2070 Ma. Both the A- and the S-granitoids have positive ɛNd(T) values, which suggests that they should have had brief crustal prehistories and were derived from juvenile Paleoproterozoic sources. The simultaneous derivation of the A- and S-granites was caused by the melting of the lower crust in response to the emplacement of large volumes of mafic magma in an environment of postcollisional collapse and lithospheric delamination with the simultaneous metamorphism of the host rocks at high temperatures and low pressures. The S-granites are thought to be derived via the melting of acid crustal material in the middle and lower crust. The A2 granites can possibly be differentiation products of mafic magmas that were emplaced into the lower crust and were intensely contaminated with crustal material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbarin, B., Genesis of the two main types of peraluminous granitoids, Geology, 1996, vol. 24, pp. 295–298.

    Article  Google Scholar 

  • Barbarin, B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 1999, vol. 46, pp. 605–626.

    Article  Google Scholar 

  • Bibikova, E.V., Bogdanova, S.V., Postnikov, A.V., et al., Sarmatia-Volgo-Uralia Junction Zone: isotopic-geochronologic characteristic of supracrustal rocks and granitoids, Stratigr. Geol. Correlation, 2009, vol. 17, no. 6, pp. 561–573.

    Article  Google Scholar 

  • Bird, P., Continental delamination and the Colorado Plateau, J. Geophys. Res., 1979, vol. 84, pp. 7561–7571.

    Article  Google Scholar 

  • Bogaerts, M., Scaillet, B., Ligeois, J.-P., et al., Petrology and geochemistry of the Lyngdal Granodiorite (southern Norway) and the role of fractional crystallization in the genesis of Proterozoic ferro-potassic A-type granites, Precambrian Res., 2003, vol. 124, pp. 149–184.

    Article  Google Scholar 

  • Chernyshov, N.M., Ponomarenko, A.N., and Bartnitskii, E.N., New age data on the Ni-bearing differentiated plutons of the Voronezh crystalline massif, Dokl. Akad. Nauk Ukr. SSR, Ser. B., 1990, no. 6, pp. 11–19.

    Google Scholar 

  • Chernyshov, N.M., Nenakhov, V.M., Lebedev, I.P., and Strik, Yu.N., A model of geodynamic history of the Voronezh Massif in the Early Precambrian, Geotectonics, 1997, vol. 31, no. 3, pp. 186–194.

    Google Scholar 

  • O’Connor, J.T., A classification for quartz-rich igneous rocks based on feldspar ratios, U.S. Geol. Surv. Prof. Pap., 1965, vol. 525-B, pp. B79–B84.

    Google Scholar 

  • Diener, F.A., White, R.W., Link, K., Dreyer, T.S., and Moodley, A., Clockwise, low-P metamorphism of the Aus granulite terrain, southern Namibia, during the Mesoproterozoic Namaqua Orogeny, Precambrian Res., 2013, vol. 224, pp. 629–652.

    Article  Google Scholar 

  • Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 1990, vol. 26, pp. 115–134.

    Article  Google Scholar 

  • Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.

    Article  Google Scholar 

  • Egipko, O.I., Afanas’ev, N.S., Dmitrievskii, V.S., and Lebedev, I.P., Main petrochemical features of Precambrian granitoids and supracrustal rocks in the southeastern Voronezh crystalline massif, Tr. Voronezh. Gos. Univ., 1968, vol. 66, pp. 141–150.

    Google Scholar 

  • Egipko, O.I., Some mineralogical-petrographic and geochemical features of the Precambrian granitoids in the southeastern Voronezh crystalline massif, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Voronezh: VGU, 1971.

    Google Scholar 

  • Gardien, V., Lardeaux, J.M., Ledru, P., et al., Metamorphism during late orogenic extension: insights from the French Variscan Belt, Bull. de la Socit Gologique de France, 1997, vol. 168, no. 3, pp. 271–286.

    Google Scholar 

  • Gerasimov, V.Yu. and Savko, K.A., Geospydometry and temperature evolution of the garnet-cordierite metapelites of the Voronezh crystalline massif, Petrology, 1995, vol. 3, no. 6, pp. 563–577.

    Google Scholar 

  • Giustina, M.E.S.D., Pimentel, M.M., Filho, C.F.F., and de Hollanda, M.H.B.M., Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anpolis-Itaucu Complex, Central Brazil, Lithos, 2011, vol. 124, pp. 82–102.

    Article  Google Scholar 

  • Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  • Harris, N.B.W., Pearce, J.A., and Tindle, A.G., Geochemical characteristics of collision zone magmatism, in Collision Tectonics, Coward, M.P. and Reis, A.C., Eds., Geol. Soc. London. Spec. Publ., 1986, vol. 19, pp. 67–81.

    Google Scholar 

  • Healy, B., Collins, W.J., and Richards, S.W., A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example, Lithos, 2004, vol. 78, pp. 197–216.

    Article  Google Scholar 

  • Hodges, K.V., Tectonics of the Himalaya and southern Tibet from two perspectives, Geol. Soc. Am. Bull., 2000, vol. 112, pp. 324–350.

    Article  Google Scholar 

  • Kremenetskii, A.A., Skryabin, V.Yu., Terent’ev, R.A., et al., Voronezh parametric hole—a new stage in understanding the deep structure of the VCM, Razved. Okhr. Nedr, 2006, no. 9–10, pp. 109–117.

    Google Scholar 

  • Krestin, E.M., Komatiites of the Late Archean greenstone belts of the Voronezh crystalline massif, Sov. Geologiya, 1980, no. 3, pp. 3–18.

    Google Scholar 

  • Larin, A.M., Sal’nikova, E.B., Kotov, A.B., et al., Early Proterozoic syn- and postcollision granites in the northern part of the Baikal Fold Area, Stratigr. Geol. Correlation, 2006, vol. 14, no. 5, pp. 463–474.

    Article  Google Scholar 

  • Larionov, A.N., Andreichev, V.A., and Gee, D.G., The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite, in The Neoproterozoic Timanide Orogen of Eastern Baltica, Gee D.G. and Pease, V.L., Eds., Geol. Soc. London, Mem., 2004, vol. 30, pp. 69–74.

    Google Scholar 

  • Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.

    Article  Google Scholar 

  • Ludwig, K.R., SQUID 1.12 A User’s Manual. A Geochronological Toolkit for Microsoft Excel, Berkley: Berkeley Geochronology Center Special Publication, 2005a. www.bgc.org/klprogrammenu.html

    Google Scholar 

  • Ludwig, K.R., User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel, Berkley: Berkeley Geochronology Center Special Publication, 2005b. www.bgc.org/klprogrammenu.html

    Google Scholar 

  • Ludwig, K.R., On the treatment of concordant uranium-lead ages, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 665–676.

    Article  Google Scholar 

  • Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  • Mineragenicheskie issledovaniya territorii s dvukhyarusnym stroeniem (na primere Voronezhskogo kristallicheskogo massiva) (Mineragenic Studies in the Areas of Two-Storey Structure with Reference to the Voronezh Crystalline Massif), Moscow: GEOKART, GEOS, 2007, p. 284.

  • Pearce, J.A., Harris, N.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  • Robb, L.J., Armstrong, R.A., and Waters, D.J., Nature and duration of mid-crustal granulite facies metamorphism and crustal growth: evidence from single zircon U-Pb geochronology in Namaqualand, South Africa, J. Petrol., 1999, vol. 40, pp. 1747–1770.

    Article  Google Scholar 

  • Rundkvist, D.V., Mints, M.V., Larin, A.M., et al., Metallogeniya ryadov geodinamicheskikh obstanovok rannego dokembriya (Metallogeny of the Series of Early Precambrian Geodynamic Settings), Moscow: MPR RF, 1999.

    Google Scholar 

  • Sandiford, M. and Powell, R., Some remarks on high-temperature-low-pressure metamorphism in convergent orogens, J. Metamorph. Geol., 1991, vol. 9, pp. 333–340.

    Article  Google Scholar 

  • Savko, K.A. and Gerasimov, V.Yu., Petrologiya i geospidometriya metamorficheskikh porod vostoka Voronezhskogo kristallicheskogo massiva (Petrology and Geospidometry of Metamorphic Rocks in the eastern Voronezh Crystalline Massif), Voronezh: VGU, 2002.

    Google Scholar 

  • Savko, K.A., Samsonov, A.V., and Bazikov, N.S., Metaterrigenous rocks of the Vorontsovka Group, Voronezh crystal-line massif: geochemistry, peculiarities of formation, and provenances, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2011a, no. 1, pp. 70–94.

    Google Scholar 

  • Savko, K.A., Samsonov, A.V., Bazikov, N.S., et al., Granitoids from the eastern Voronezh crystalline massif: geochemistry, Th-U-Pb age, and petrogenesis, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2011b, no. 2, pp. 98–115.

    Google Scholar 

  • Savko, K.A. and Skryabin, V.Yu., Geochronology and composition of the gabbrodiorite-tonalitic and granodioritegranitic rocks of the Talovsky Intrusion, Voronezh crystalline massif, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2012, no. 2, pp. 95–104.

    Google Scholar 

  • Searle, M.P., Parrish, R.R., Hodges, K.V., et al., Shisha Pangma leucogranite, South Tibetan Himalaya: field relations, geochemistry, age, origin, and emplacement, J. Geol., 1997, vol. 105, pp. 295–317.

    Article  Google Scholar 

  • Shchipanskii, A.A., Samsonov, A.V., Petrova, A.Yu., and Larionova, Yu.O., Geodynamics of the eastern margin of Sarmatia in the Paleoproterozoic, Geotectonics, 2007, no. 1, pp. 38–62.

    Google Scholar 

  • Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.

    Article  Google Scholar 

  • Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.

    Article  Google Scholar 

  • Sylvester, P.J., Post-collisional strongly peraluminous granites, Lithos, 1998, vol. 45, pp. 29–44.

    Article  Google Scholar 

  • Terent’ev, R.A., Savko, K.A., Samsonov, A.V., and Larionov, A.N., Geochronology and geochemistry of acid metavolcanic rocks of the Losevo Group, Voronezh crystalline massif, Dokl. Earth Sci., 2014, vol. 454, no. 5, pp. 136–139.

    Article  Google Scholar 

  • Voronova, T.A. and Glaznev, V.N., 3D density model of the Korshevsky granite massif and in relation with its metallogenic specialization, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2012, no. 2, pp. 164–168.

    Google Scholar 

  • Waters, D.J., Thermal history and tectonic setting of the Namaqualand Granulites, Southern Africa: clues to Proterozoic crustal development, in Granulites and Crustal evolution, Vielzeuf, D. and Vidal, P., Eds., Dordrecht: Kluwer, 1990, pp. 243–256.

    Chapter  Google Scholar 

  • Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination, and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  • Williams, I.S., U-Th-Pb geochronology by ion microprobe, Applications in micro analytical techniques to understanding mineralizing processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Article  Google Scholar 

  • Xia, Y., Xu, X-S., and Zhu, K-Y., Paleoproterozoic S- and A-type granites in southwestern Zhejiang: magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement, Precambrian Res., 2012, vol. 216–219, pp. 177–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Savko.

Additional information

Original Russian Text © K.A. Savko, A.V. Samsonov, A.N. Larionov, Yu.O. Larionova, N.S. Bazikov, 2014, published in Petrologiya, 2014, Vol. 22, No. 3, pp. 235–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savko, K.A., Samsonov, A.V., Larionov, A.N. et al. Paleoproterozoic A- and S-granites in the eastern Voronezh Crystalline Massif: Geochronology, petrogenesis, and tectonic setting of origin. Petrology 22, 205–233 (2014). https://doi.org/10.1134/S0869591114030059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114030059

Keywords

Navigation