Skip to main content
Log in

The Geochemical Features of Au-Ag Epithermal Mineralization at the Kayenmyvaam Volcanic Uplift, Central Chukotka

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper considers geochemical features of the Au-Ag epithermal mineralization at the Kayenmyvaam volcanic uplift (KVU) situated in the middle of the Chukchi segment which is part of the inner zone of the Okhotsk–Chukchi volcanogenic belt (OChVB). New evidence is presented concerning the composition and concentrations of trace elements, including REEs, in the ores of Au-Ag deposits (Arykevaam, Kyaenmyvaam, and Televeem). The ores were found to be enriched in a wide range of trace elements (Li, Se, Mo, Au, Ag, As, Sb, Cu, Pb, In, Cd, Tl, Zn, Bi, Te, and W). The enrichment ratios vary between a few times (Li, Se, Bi, Zn, Tl, In) to tens (Mo, Te, Pb, Cd), hundreds (As, Cu), thousands and tens of thousand times (Au, Ag, Sb). Comparative analysis of the distribution patterns of trace elements shows synchronous enrichment of the ores in similar sets of trace elements. The ores were found to be dominated by light “hydrophile” lanthanoids of the “cerium” group, slightly inclined near-chondrite patterns, without obvious europium maxima and minima, which have configurations similar to the REE patterns of volcanic rock sequences of the andesite–diorite series. The ore-forming fluids belonged to an NaCl–H2O hydrothermal system enriched in Cl relative to F; the Y/Ho ratios in the ores correspond with the range of ratios characteristic for present-day hydrothermal fluids in the backarc basins. The low Co/Ni ratios in the ores probably reflect a large involvement of meteoric near-surface fluids in the mineralization. The Ce/Ce* and Eu/Eu* ratios vary between slightly negative to moderately positive values (Ce/Ce* between 0.71 and 1.07) and (Eu/Eu* between 0.63 and 1.14). This combination of Ce/Ce* and Eu/Eu* corresponds to oxidizing conditions that were existent during the mineralization. The geochemical data indicate andesitic magmas and meteoric waters as the most likely sources of the fluids. The results classify the mineralization under study as belonging to the high sulfidation epithermal class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Akinin, V.V. and Miller, E.L., The evolution of the calc-alkalic magmas of the Okhotsk-Chukotka volcanic belt, Petrology, 2011, vol. 19, no. 3, pp. 237–277.

    Article  Google Scholar 

  2. Bau, M., Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium, Chem. Geol., 1991, vol. 93, pp. 219–230.

    Article  Google Scholar 

  3. Belyi,V.F., Geologiya Okhotsko-Chukotskogo vulkanogennogo poyasa (The Geology of the Okhotsk–Chukchi Volcanogenic Belt), Magadan: SVKNII DVO RAN, 1994.

  4. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., The composition and origin of fluids in the hydrothermal system of the Nezhdaninskoe gold deposit, Sakha-Yakutiya, Russia, Geologiya Rudnykh Mestorozhdenii, 2007, vol. 49, no. 2, pp. 99–145.

    Google Scholar 

  5. Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., et al., The Natalkino worldclass gold deposit: REE distribution, fluid inclusions, stable oxygen isotopes, and the conditions during the formation of the ore (Northeast Russia), Geol. Rudn. Mestor., 2008, vol. 50, no. 5, pp. 414–444.

    Google Scholar 

  6. Jones, B. and Manning, D.A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 1994, vol. 111, pp. 111–129.

    Article  Google Scholar 

  7. Kravtsova, R.G., Geokhimiya i usloviya formirovaniya zolotoserebryanykh rudoobrazuyushchikh sistem Severnogo Priokhot’ya (The Geochemistry and the Conditions of Generation for the Gold–Silver Mineralizing Systems on the Northern Coast of the Sea of Okhotsk), Novosibirsk: Akad. Izd-vo Geo, 2010.

  8. Kun, L., Ruidong, Y., Wenyong, Ch., et al., Trace element and REE geochemistry of the Zhewang gold deposit, southeastern Guizhou Province, China, Chin. J. Geochem., 2014, vol. 33, pp. 109–118.

    Article  Google Scholar 

  9. McDonough, W.F. and Sun, S.S., The Composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  10. Malysheva, G.M., Isaeva, E.P., Tikhomirov, Yu.B., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii (A Geological State Map of the Russian Federation), Scale 1 : 1 000 000 (third generation), Chukchi Series, Sheet Q-59 (Markovo), Explanatory Note, St. Petersburg: Kartograficheskaya Fabrika VSEGEI, 2012.

  11. Mineev, D.A., Lantanoidy v rudakh redkozemel’nykh elementov i kompleksnykh mestorozhdenii (Lathanoids in Ores of Rare Earth and Complex Deposits), Moscow: Nauka, 1974.

  12. Monecke, T., Kempe, U., and Gotze, J., Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study, Earth. Planet. Sci. Lett., 2002, vol. 202, pp. 709–724.

    Article  Google Scholar 

  13. Oreskes, N. and Einaudi, M.T., Origin of rare-earth element enriched hematite breccias at the Olympic Dam Cu‒U‒Au‒Ag deposit, Roxby Downs, South Australia, Econ. Geol., 1990, vol. 85, no. 1, pp. 1–28.

    Article  Google Scholar 

  14. Prokofiev, V.Yu., Volkov, A.V., Nikolaev, Yu.N., et al., The conditions for the generation of the epithermal Au-Ag mineralization in the Kaenmyvaam ore field, central Chukotka, Rudy i Metally, 2019, no. 1, pp. 52–57.

  15. Sokolov, S.D., Bondarenko, G.E., Morozov, O.L., and Grigor’ev, V.N., The transition zone between the Asian continent and the northwest Pacific during Late Jurassic/Early Cretaceous time, in Teoreticheskie i regional’nye problemy geodinamiki (Theoretical and Regional Problems of Geodynamics), Moscow: Nauka, 1999 (Trudy GIN RAN, no. 515), pp. 30–82.

  16. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Blackwell Scientif. Publs., Oxford, 1985.

    Google Scholar 

  17. Tikhomirov, P.L., Kalinina, E.A., Moriguti, T., Makishima, A., Kobayashi, K., and Nakamura, E., Trace element and isotopic geochemistry of Cretaceous magmatism in NE Asia: Spatial zonation, temporal evolution, and tectonic controls, Lithos, 2016, vol. 264, pp. 453–471.

    Article  Google Scholar 

  18. Tikhomirov, P.L., Prokofiev, V.Yu., Kalko, I.A., Apletalin, A.V., Nikolaev, Yu.N., Kobayashi, K., and Nakamura, E., Postcollisional magmatism in western Chukotka and the early Cretaceous tectonic rearrangement of Northeast Asia, Geotektonika, 2017, no. 2, pp. 32–54.

  19. Vinokurov, S.F., Europium anomalies at ore deposits and their genetic significance, Dokl. Akad. Nauk, 1996, vol. 346, no. 6, pp. 792–795.

    Google Scholar 

  20. Vinokurov, S.F., Kovalenker, V.A., Safonov, Yu.G., and Kerzin, A.L., Lanthanoids in quarts found in epitherma gold deposits: The distribution and genetic significance, Geokhimiya, 1999, no. 2, pp. 171‒180.

  21. Vlasov, E.A., Prokoviev, V.Yu., Nikolaev, Yu.N., et al., A new finding of gold–telluride mineralization in Chukotka: The mineralogy and the conditions for the generation of the Televeem ore occurrence, Rudy i Metally, 2016, no. 4, pp. 48–50.

  22. Volkov, A.V., Sidorov, A.A., Savva, N.E., Kolova, E.E., Chizhova, I.A., and Murashov, K.Yu., The geochemistry of volcanogenic mineralization in the northwestern segment of the Pacific Ore Belt: Northeast Russia, J. Volcanol. Seismol., 2017, vol. 11, no. 6, pp. 389–406.

    Article  Google Scholar 

  23. Volkov, A.V., Sidorov, A.A., Prokofiev, V.Yu., Savva, N.E., Kolova, E.E., and Murashov, K.Yu., Epithermal mineralization in the Okhotsk–Chukchi Volcano-Plutonic Belt, J. Volcanol. Seismol., 2018a, vol. 12, no. 6, pp. 359–379.

    Article  Google Scholar 

  24. Volkov, A.V., Savva, N.E., Kolova, E.E., Prokofiev, V.Yu., and Murashov, K.Yu., The DSvoinoe epithermal Au-Ag deposit, Chukotka, Geol. Rudn. Mestor., 2018b, vol. 60, no. 6, pp. 590–609.

    Google Scholar 

  25. Volkov, A.V., Prokofiev, V.Yu., Vinokurov, S.F., Murashov, K.Yu., Andreeva, O.V., Kiseleva, G.D., Volf-son, A.A., and Sidorova, N.V., The Valunistoe epithermal Au-Ag deposit, eastern Chukotka, Russia: Geological structure, mineralogical and geochemical features, and mineralization conditions, Geol. Rudn. Mestor., 2020a, vol. 62, no. 2, pp. 107–133.

    Google Scholar 

  26. Volkov, A.V., Prokofiev, V.Yu., Sidorov, A.A., Galaymov, A.L., Wolfson, A.A., and Sidorova, N.V., Conditions for the Au-Ag epithermal mineralization in the Arykevaam volcanic field, central Chukotka, J. Volcanol. Seismol., 2020b, vol. 14, no. 4, pp. 220–245.

    Article  Google Scholar 

  27. Zharikov, V.A., Gorbachev, N.S., Latfutt, P., et al., The distribution of rare earth elements and yttrium between the fluid and the basaltic melt at pressures of 1–12 kbars (experimental evidence), Dokl. Akad. Nauk, 1999, vol. 366, no. 2, pp. 239–241.

    Google Scholar 

Download references

Funding

This work was supported through a governmental assignment at the IGEM RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.V., Volfson, A.A., Galyamov, A.L. et al. The Geochemical Features of Au-Ag Epithermal Mineralization at the Kayenmyvaam Volcanic Uplift, Central Chukotka. J. Volcanolog. Seismol. 16, 323–333 (2022). https://doi.org/10.1134/S0742046322050086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046322050086

Keywords:

Navigation