Skip to main content
Log in

The Experimental Study and Simulation of Volcanic Structures Using Active Vibroseismic Methods

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper is a review of our work, an experimental study and simulation of seismic fields in volcanic structures using vibrators as sources of elastic waves. We review the results of experimental studies of mud volcanoes carried out by the Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG) of the Siberian Branch (SB), Russian Academy of Sciences (RAS); by the Institute of Physics of the Earth (IPE), RAS; and by the Kuban State University in the Taman mud-volcanic province using vibrators. We have carried out mathematical simulation in heterogeneous geophysical media to refine the information on the structure of the object under investigation, as well as on the distinguishing features of the seismic field. We have developed a mathematical approach to deal with the simulation of vibroseismic probing of mud volcanoes with arbitrary geometries incorporating knowledge of deep-seated faults, overlapping layers, and so on. Numerical techniques were used to solve sets of equations in elasticity theory and to develop parallel algorithms, program packages, as well as carrying out numerical experiments in high-performance computational systems. We present results from calculations of the seismic field for the source zone of the Shugo mud volcano. This paper describes 3D and 2D geophysical models developed for this study and the results of simulation for the seismic field of the Karabetova Gora mud volcano and for the Elbrus magmatic volcano. It is shown that the approach developed here using active vibroseismic techniques can be successfully used in practice to refine the seismic field, the deep structure of geophysical models, and to study the effects exerted by the geometry of a magma chamber and by the presence of erupting channels on data acquired by an observation system on the ground surface. These studies prove that vibroseismic sources with high accuracies of periodic excitation can be used to study volcanic structures and to conduct active monitoring of volcanic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Aki, K. and Ferrazzini, V., Seismic monitoring and modeling of an active volcano for prediction, J. Geophysical Research: Solid Earth, 2000, vol. 105(B7), pp. 16 617–16 640.

  2. Aki, K., Fehler, M., and Das, S., Source mechanism of volcanic tremor: Fluid-driven crack models and their application to the 1963 Kilauea eruption, J. Volcanol. Geotherm. Res., 1977, vol. 2, pp. 259–287.

    Article  Google Scholar 

  3. Alekseev, A.S., Glinsky, B.M., Kovalevsky, V.V., et al., A multidisciplinary mathematical model for earthquake prediction studies and vibroseismic monitoring of seismic prone zones, Proc. 2nd International Conference on Seismology and Earthquake Engineering, Tehran: JJEES, 1995, vol. 1, pp. 97–104.

  4. Alrkseev, A.S., Geza, N.I., Glinskiy, B.M., et al., Aktivnaya seismologiya s moshchnymi vibratsionnymi istochnikami (Active Seismology Using Powerful Vobration Sources), Novosibirsk: IVNiMG SO RAN, 2004.

  5. Alekseev, A.S., Glinsky, B.M., Kovalevsky, V.V., et al., Active vibromonitoring: experimental systems and fieldwork results, Handbook of Geophysical Exploration: Seismic Exploration, 2010, vol. 40, pp. 105–120.

  6. Aoki, Y., Takeo, M., Ayoama, H., et al., P-wave velocity structure beneath Asama volcano, Japan, inferred from active source seismic experiment, J. Volcanol. Geotherm. Res., 2009, vol. 187, pp. 272–277.

    Article  Google Scholar 

  7. Aster, R.C., Slad, G., Henton, J., et al., Differential analysis of coda Q using similar microearthquakes in seismic gaps. Part 1. Techniques and application to seismograms recorded in the Anza seismic gap, Bull. Seismol. Soc. Amer., 1996, vol. 86, pp. 868–889.

    Google Scholar 

  8. Avdulov, M.V., On the geological origin of the Elbrus gravity anomaly, Izv. AN SSSR, Ser. Geol., 1962, no. 9, pp. 67–74.

  9. Avdulov, M.V., On the geological origin of the Elbrus gravity low, Vestnik MGU, Ser. 4, Geol., 1993, no. 3, pp. 32–39.

  10. Belyashova, N.N. and Mikhailova, N.N., The NYaTs RK system for monitoring of nuclear tests. Development and potential, Vestnik NYaTs RK, 2007, vol. 2(30), pp. 5–8.

    Google Scholar 

  11. Benz, H.M., Chouet, B.A., Dawson, P.B., et al., Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 1996, vol. 101, pp. 8111–8128.

    Article  Google Scholar 

  12. Bogatikov, O.A., Zalikhanov, M.Ch., and Karamurzov, B.S., Prirodnye protsessy na territorii Kabardino-Balkarii (Natural Processes in Kabardino-Balkaria), Moscow: GUP PPP Nauka, 2004.

  13. Brenguier, F., Clarke, D., Aoki, Y., et al., Monitoring volcanoes using seismic noise correlations, Comptes Rendus Geoscience, 2011, vol. 343, nos. 8–9, pp. 633–638.

    Article  Google Scholar 

  14. Cardaci, C., Coviello, M., Lombardo, G., et al., Seismic tomography of Etna volcano, J. Volcanol. Geotherm. Res., 1993, vol. 56, pp. 357–368.

    Article  Google Scholar 

  15. Chouet, B., Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor, J. Geophys. Res.: Solid Earth, 1985, vol. 90, pp. 1881–1893.

    Article  Google Scholar 

  16. Dawson, P.B., Chouet, B.A., Okubo, P.G., et al., Three-dimensional velocity structure of the Kilauea caldera, Hawaii, Geophys. Res. Lett., 1999, vol. 26, pp. 2805–2808.

    Article  Google Scholar 

  17. Emanov, A.F., Kuzmenko, A.P., and Seleznev, V.S., The results of a study of the wave field due to a powerful centrifugal vibration source, in Izluchenie i registratsiya vibroseismicheskikh signalov (The Radiation and Recording of Vibration Seismic Signals), Novosibirsk: IGiG SO AN SSSR, 1986, pp. 105–120.

  18. Fatyanov, A.G., A semi-analytical method for dealing with forward dynamic problems in layered media, Dokl. AN SSSR, 1990, vol. 310, no. 2, pp. 323–327.

    Google Scholar 

  19. Fatyanov, A.G., Forward and inverse problems for the seismic moment tensor in layered media, Dokl. AN SSSR, 1991, vol. 317, no. 6, pp. 1357–1361.

    Google Scholar 

  20. Fatyanov, A.G. and Miroshnikov, V.V., An energy-related method for finding Green’s function in multidimensional heterogeneous media, Dokl. Akad. Nauk, 1996, vol. 351, no. 2, pp. 264–266.

    Google Scholar 

  21. Fehler, M. and Aki, K., Numerical study of diffraction of plane elastic waves by a finite crack with application to location of a magma lens, Bull. Seismol. Soc. Amer., 1978, vol. 68(3), pp. 573–598.

    Article  Google Scholar 

  22. Fehler, M., Roberts, P., and Fairbanks, T., A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens, J. Geophys. Res. B.: Solid Earth and Planets, 1988, vol. 93(5), pp. 4367–4373.

    Article  Google Scholar 

  23. Garcia-Yeguas, A., Koulakov, I., Ibanez, J.M., et al., High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data, J. Geophys. Res.: Solid Earth, 2012, vol. 117, B09309.

    Google Scholar 

  24. Glinskiy, B.M. and Ivanova, I.N., On the relationship of the spectra of a vibroseismic wave field to the geological structure of the Gora Karabetova mud volcano, Geo-Sibir, 2011, vol. 4, pp. 100–106.

    Google Scholar 

  25. Glinskiy, B.M., Kovalevsky, V.V., and Khairetdinov, M.S., The relationship of the wave fields due to powerful vibrators to atmospheric and geodynamic processes, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 431–441.

    Google Scholar 

  26. Glinskiy, B.M., Kovalevsky, V.V., and Khairetdinov, M.S., Vibroseismic monitoring of earthquake-prone areas, Volcanology and Seismology, 2000, vol. 21(6), pp. 723–730.

    Google Scholar 

  27. Glinskiy, B.M., Sobisevich, A.L., and Khairetdinov, M.S., An attempt at vibroseismic sounding of complex-structured geological features: Shugo mud volcano, Dokl. Akad. Nauk, 2007, vol. 413, no. 3, pp. 398–402.

    Google Scholar 

  28. Glinskiy, B.M., Sobisevich, A.L., Fatyanov, A.G., et al., Mathematical simulation and experimental studies of the Shugo mud volcano, J. Volcanol. Seismol., 2008, vol. 2, no. 5, pp. 364–374.

    Article  Google Scholar 

  29. Glinskiy, B.M., Karavaev, D.A., Kovalevsky, V.V., et al., Numerical simulation and experimental studies of the Gora Karabetova mud volcano using vibroseismic methods, Vych. Met. Programmir., 2010a, vol. 11, pp. 95–104.

    Google Scholar 

  30. Glinskiy, B.M., Kovalevsky, V.V., and Khairetdiov, M.S., Experimental studies of the Gora Karabetova mud volcano using vibroseismic methods, in Tr. VI Mezhdun. Kongr. GEO-Sibir-2010 (Proc. VI Intern. Congress GEO-Sibir-2010), Novosibirsk: SGGA, 2010b, vol. 4, pp. 139–143.

  31. Glinskiy, B.M., Martynov, V.N., and Sapetina, A.F., 3D modeling of seismic wave fields in a medium specific to volcanic structures, Yakutian Math. J., 2015a, vol. 22(3), pp. 84–98.

    Google Scholar 

  32. Glinskiy, B.M., Martynov, V.N., and Sapetina, A.F., A technology of supercomputer 3D simulation for seismic wave fields in complex-structured media, Vestnik Yuzhno-Ural. Gos. Un-ta, Ser. Vychisl. Matem. Inform., 2015b, vol. 4, no. 4, pp. 101–116.

    Google Scholar 

  33. Glinskiy, B., Sapetina, A., Martynov, V., et al., The hybrid-cluster multilevel approach to solving the elastic wave propagation problem, in Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, Sokolinsky, L. and Zymbler, M., Eds., Cham: Springer, 2017, vol. 753, pp. 261–274.

    Google Scholar 

  34. Gorbatikov, A.V., Sobisevich, A.V., Sobisevich, L.E., et al., A technology of deep crustal sounding using natural low-frequency microseismic field, in Izmeneniya okruzhayushchei sredy i klimata, prirodnye i svyazannye s nimi tekhnogennye katastrofy (Changes in Environment and Climate, Natural and Related Manmade Disasters), vol. 1, Seismicheskie protsessy i katastrofy (Seismic Processes and Disasters), Moscow: IFZ RAN, 2008, pp. 223–236.

  35. Gurbanov, A.G., Gazeev, V.M., Bogatikov, O.A., et al., Elbrus active Volcano and its geological history, Russian J. Earth Sci., 2004, vol. 6(4), pp. 257–277.

    Article  Google Scholar 

  36. Kanareikin, B.A., Maltsev, A.I., and Kharlamov, A.S., A study of a zone of mud volcanism in the Kerch Peninsula using engineering seismic techniques, Geol. Mineral. Syr. Res. Sib., 2019, no. 1, pp. 35–46.

  37. Karavaev, D.A., Glinsky, B.M., and Kovalevsky, V.V., A technology of 3D elastic wave propagation simulation using hybrid supercomputers, in CEUR Workshop Proceedings of the 1st Russian Conference on Supercomputing— Supercomputing Days, 2015, pp. 26–33.

  38. Kasahara, J., Korneev, V., and Zhdanov, M., Active geophysical monitoring, Handbook of Geophysical Exploration, Seismic Exploration, Elsevier Science, 2010a, vol. 40, pp. 572.

    Google Scholar 

  39. Kasahara, J., Hasada, Y., and Tsuruga, K., Seismic imaging of time lapse for CCS and oil and gas reservoirs using ultra-stable seismic source (ACROSS), SEGJ Fall Meeting Abstract, 2010b, pp. 74–77.

  40. Kasahara, J., Hasada, Y., and Tsuruga K., Imaging of ultra-long-term temporal change of reservoir(s) by accurate seismic sources(s) and multi-receivers, Extended abstract of EAGE workshop on Permanent Reservoir Monitoring (PRM), Trondheim, Norway, 2011a, pp. 40–44.

    Google Scholar 

  41. Kasahara, J., Ito, S., Hasada, Y., et al., Generation of vertical and horizontal vibrations by a synthetic method using an ultra-stable and continuous seismic source for the time lapse measurements, American Geophysical Union, Fall Meeting Abstract, 2011b, pp. T43B–2310.

  42. Kasahara, J., Ito, S., Fujiwara, T., et al., Real time imaging of CO2 storage zone by very accurate stable-long term seismic source, Energy Procedia, 2013, vol. 37, pp. 4085–4092.

    Article  Google Scholar 

  43. Kasahara, J., Tsuruga, K., Hasada, Y., et al., Active monitoring of Earthquake Focal zone using ultra-stable seismic source, in International Conference on Seismology Earthquake Engineering (IIEES), 2015, pp. 1–7.

  44. Komatitsch, D. and Martin, R., An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 2007, vol. 72(5), 1SO–Z83.

  45. Koulakov, I., Gordeev, E., Dobretsov, N., et al., Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 75–91.

    Article  Google Scholar 

  46. Koulakov, I., Jaxybulatov, K., Shapiro, N.M., et al., Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding, J. Volcanol. Geotherm. Res., 2014, vol. 285, pp. 36–46.

    Article  Google Scholar 

  47. Kovalevsky, V.V., Estimation of sensitivity of the method of active monitoring by mono-frequency signals, Bulletin of the Novosibirsk Computing Center, Series: Mathematical Modeling in Geophysics, 2006, vol. 11, pp. 43–52.

    Google Scholar 

  48. Kovalevsky, V.V., On the characteristics of the underground seismic array in the Elbrus area, Vestnik NYaTs RK, 2013, vol. 2, no. 54, pp. 18–23.

    Google Scholar 

  49. Kovalevsky, V.V., Glinsky, B.M., Khairetdinov, M.S., et al., On possible vibroseismic studies of mud volcanoes, Vestnik NYaTs RK, 2012, vol. 2, no. 50, pp. 55–66.

    Google Scholar 

  50. Kovalevsky, V.V., Belonosov, A.S., Avrorov, S.A., et al., Location of seismic events in the Elbrus area by an underground seismic array, Vestnik NYaTs RK, 2014, vol. 2, no. 58, pp. 123–128.

    Google Scholar 

  51. Kovalevsky, V.V., Glinskiy, B.M., Khairetdinov, M.S., et al., Active vibromonitoring: experimental systems and fieldwork results, in Active Geophysical Monitoring, 2nd ed., Kasahara, J., , Eds., Elsevier Science, 2020, pp. 43–65.

    Google Scholar 

  52. Kristek, J., Moczo, P., and Archuleta, R.J., Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes, Studia Geophys. Geod., 2002, vol. 46, pp. 355–381.

    Article  Google Scholar 

  53. Kumazawa, M., Kunitomo, T., Yokoyama, Y., et al., ACROSS: Theoretical and technical developments and prospect to future applications, JNC Tech. Rev., 2000, vol. 9, pp. 115–129.

    Google Scholar 

  54. Kunitomo, T. and Kumazawa, M., Active monitoring of the Earth’s structure by the seismic ACROSS – Transmitting and receiving technologies of the seismic ACROSS, in Proc. 1st International Workshop 'Active Monitoring in the Solid Earth Geophysics’, Mizunami, Japan, 2004, pp. S4–04.

  55. Landru, M., Solheim, O., Hilde, E., et al., The Gullfaks 4D seismic study, Petroleum Geoscience, 1999, vol. 5(3), pp. 213–226.

    Article  Google Scholar 

  56. Laverov, N.P., Bogatikov, O.A., Gurbanov, A.G., et al., The geodynamics, seismotectonics, and volcanism of Central Caucasus, in Globalnye izmeneniya prirodnoi sredy i klimata (Global Changes in Environment and Climate), Moscow: Nauka, 1997, pp. 109–130.

  57. Laverov, N.P., Dobretsov, N.L., Bogatikov, O.A., et al., Noveishii i sovremennyi vulkanizm na territorii Rossii (Neotectonic and Recent Volcanism in the Area of Russia), Laverov, N.P., Sci. Ed., Shmidt Institute of Physics of the Earth, Moscow: Nauka, 2005.

  58. Levander, A.R., Fourth-order finite-difference P-SV seismograms, Geophysics, 1988, vol. 53(11), pp. 1425–1436.

    Article  Google Scholar 

  59. Londono, B., Sanchez, A., Toro, E., et al., Coda Q before and after the eruptions of 13 November 1985, and 1 September 1989, at Nevado del Ruiz Volcano, Colombia. Bull Volcanol., 1988, vol. 59, pp. 556–561.

    Google Scholar 

  60. Martynov, V.N., Glinsky, B.M., Karavaev, D.A., et al., Simulation for the vibroseismic monitoring of volcanic structures, Interekspo GEO-Sibir, Novosibirsk: SGUGiT, 2018, vol. 4, no. 2, pp. 122–132

    Google Scholar 

  61. Mazzini, A. and Etiope, G., Mud volcanism: An updated review, Earth-Science Rev., 2017, vol. 168, pp. 81–112.

    Article  Google Scholar 

  62. McNutt, S.R., Seismic monitoring, in Encyclopedia of Volcanoes, Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., Eds., San Diego, CA: Academic Press, 2000, pp. 1095–1119.

    Google Scholar 

  63. Milyukov, V., Myasnikov, A., and Mironov, A., Monitoring the state of the magmatic structures of Elbrus Volcano based on observation of lithosphere strains, AIP Conference Proc., 2008, vol. 1022, pp. 405–408.

    Article  Google Scholar 

  64. Nechaev, Yu.V., Space technologies for the study of local crustal inhomogeneities, in Sborkik nauchnykh trudov “Geofizika na rubezhe vekov” (Collected Scientific Works “Geophysics at the Turn of the Century”), Moscow: OIFZ RAN, 1999, pp. 276–290.

    Google Scholar 

  65. Ovsyuchenko, A.N., Sobisevich, A.L., and Sysolin, A.I., On relationships between recent tectonic processes and mud volcanism: Gora Karabenjva, Taman Peninsula, Fizika Zemli, 2017, no. 4, pp. 118–129.

  66. Paulatto, M. Minshull, T.A., Baptie, B., et al., Upper crustal structure of an active volcano from refraction/reflection tomography, Montserrat, Lesser Antilles, Geophys. J. Int., 2010, vol. 180, pp. 685–696.

    Article  Google Scholar 

  67. Presnov, D.A., Zhostkov, R.A., Likhodeev, Beloborodov, D.E., Dudarov, Z.I., and Dolov, S.M., New evidence for the deep structure of the Dzhau-Tepe mud volcano, J. Volcanol. Seismol., 2020, vol. 14, no. 3, pp. 166—176.

    Article  Google Scholar 

  68. Problemy nelineinoi seismiki (Problems in Nonlinear Seismology), A collection of papers, Nikolaev, A.V., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  69. Sapetina, A.F., Supercomputer-aided comparison of the efficiency of using different mathematical statements of the 3D geophysical problem, Bulletin of the Novosibirsk Computing Center, Series: Numerical Analysis, 2016, vol. 18, pp. 57–66.

    Google Scholar 

  70. Sapetina, A.F., Glinskiy, B.M., and Martynov, V.N., Numerical modeling results for vibroseismic monitoring of volcanic structures with different shape of the magma chamber, J. Physics: Conference Series, 2021, vol. 1715, 012057.

    Google Scholar 

  71. Seleznev, V.S., Alekseev, A.S., Goldin, S.V., et al., Vibration geotechnologies in III millennium, in 1st International Workshop on Active Monitoring in the Solid Earth Geophysics (IWAMO4), Proceedings, Japan, 2004, pp. 39–42.

  72. Shnyukov, E.F., Sheremetiev, V.M., Maslakov, N.A., et al., Gryazevye vulkany Kerchensko-Tamanskogo regiona (Mud Volcanoes in the Kerch—Taman Region), Krasnodar: GlavMedia, 2006.

  73. Sobisevich, A.L., Izbrannye zadachi matematicheskoi geofiziki, vulkanologii i geoekologii (Selected Problems in Mathematical Geophysics, Volcanology, and Geoecology), vol. 1, Moscow: IFZ RAN, 2012.

  74. Sobisevich, A.L., Gorbatikov, A.V., and Ovsyuchenko, A.N., The deep structure of Gora Karabetova mud volcano, Dokl. Akad. Nauk, 2008, vol. 422, no. 4, pp. 542–546.

    Google Scholar 

  75. Sobisevich, A.L., Tveritinova, T.Yu., Likhodeev, D.V., et al., The deep structure of Jarjava mud volcano within the South Kerch anticlinal structure, Vopr. Inzh. Seismol., 2015, vol. 42, no. 2, pp. 73–80.

    Google Scholar 

  76. Soloviev, V.M., Kashun, V.N., Elagin, S.A., et al., Active vibroseismic monitoring of the Altai—Sayan region, Interekspo GEO-Sibir-2016, 2016, vol. 2, pp. 229–233.

  77. Tveritinova, T.Yu., Sobisevich, A.L., Sobisevich, L.E., et al., The structural setting and peculiar features in the structure and formation of Gora Karabetova mud volcano, Geol. Polezn. Iskop. Mir. Ok., 2015, vol. 2, no. 40, pp. 106–122.

    Google Scholar 

  78. Virieux, J., P-SV wave propagation in heterogeneous media; velocity-stress finite-difference method, Geophysics, 1986, vol. 51(4), pp. 889–901.

    Article  Google Scholar 

  79. Volodin, I.A., Nonlinearity and multiscale in seismoacoustics, in Problemy geofiziki XXI veka (Problems in the Geophysics of the 21st Century), M.: Hayкa, 2003. C. 5–36.

  80. Yushin, V.I., Geza, N.I., and Yun En Din, On an experimental estimate for the possibility of correlation accumulation of vibroseismic signals for deep seismic sounding, Geol. Geofiz., 1981, no. 8, pp. 123‒126.

  81. Zandomeneghi, D., Barclay, A.H., Almendros, J., et al., Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications, J. Geophys. Res., 2009, vol. 114, B06310.

    Google Scholar 

  82. Zollo, A., D’Auria, L., De Matters, R., et al., Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: Imaging of the shallow structure of Mt. Vesuvius (Southern Italy), Geophys. J. Int., 2002, vol. 151, pp. 566–582.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Academician RAS V.A. Babeshko for organizing experimental studies of Shugo and Karabetova Gora volcanoes.

Funding

This work was supported through State Contract with the ICM&MG SB RAS nos. 0251-2021-0005 and 0251-2021-0004. The development of the software was in part supported by the Russian Foundation for Basic Research, project nos. 20-01-00231 and 21-51-15002. The experimental work was supported by the Russian Foundation for Basic Research, project no. 08-07-10000k.

The calculations were performed using computational resources at the Siberian Super Computer Center, ICM&MG SB RAS

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. M. Glinskiy or D. A. Karavaev.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinskiy, B.M., Kovalevsky, V.V., Khairetdinov, M.S. et al. The Experimental Study and Simulation of Volcanic Structures Using Active Vibroseismic Methods. J. Volcanolog. Seismol. 16, 280–298 (2022). https://doi.org/10.1134/S0742046322040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046322040030

Key words:

Navigation