Skip to main content
Log in

Effect of Simulated Hypomagnetic Conditions on Some Physiological Paremeters under 8-Hour Exposure. Experiment Arfa-19

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The research is a complex experiment that had a double-blind randomized placebo-controlled study. An effective measurement of the parameters of the human body was examined on eight apparently healthy subjects during an exposure of 8 h in altered magnetic conditions. The results of the experiment did not reveal significant risks for the functional state of the human body with a decrease in the multiplicity of about 1000 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The state of health of the test subjects is conditionally equated to the state of health of active cosmonauts.

REFERENCES

  1. Afshinnekoo, E., Scott, R.T., MacKay, M.J., et al., Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration, Cell, 2020, vol. 183, no. 5, p. 1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hassler, D.M., Zeitlin, C., Wimmer-Schweingru-ber, R.F., et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover, Science, 2014, vol. 343, no. 6169, p. 1244797.

    Article  PubMed  Google Scholar 

  3. Patel, Z.S., Brunstetter, T.J., Tarver, W.J., et al., Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars, NPJ Microgravity, 2020, vol. 6, no. 1, p. 33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jillings, S., Van Ombergen, A., Tomilovskaya, E., et al., Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight, Sci. Adv., 2020, vol. 6, no. 36, p. eaaz9488.

  5. Vernice, N.A., Meydan, C., Afshinnekoo, E., and Mason, C.E., Long-term spaceflight and the cardiovascular system, Precis. Clin. Med., 2020, vol. 3, no. 4, p. 284.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Panasyuk, M.I., Spassky, A.V., and Trukhanov, K.A., Hypo-magnetic problems of the deep space missions, J. Astrobiol. Outreach, vol. 2, no. 3. e 106. https://doi.org/10.4172/2332-2519.1000e106

  7. Ragul’skaya, M.V., Effect of solar activity variations on functionally healthy people, Extended Abstract of Cand. Sci. Dissertation, Moscow, 2005, p. 165.

  8. Mikhailova, Z.D., Klimkin, P.F., Shalenkova, M.A., et al., Assessment of the significance of the melatonin level and some meteorological and heliogeophysical factors in patients with acute coronary syndrome, Klin. Med., 2017, vol. 95, no. 10, p. 888.

    Article  Google Scholar 

  9. Kravchenko, K.L., Aleksandrova, N.V., and Yazev, S.A., Heliophysical factors and crime in the Irkutsk oblast, Izv. Irkutsk. Gos. Univ., Ser. Nauki Zemle, vol. 3, no. 2, p. 103.

  10. Kishkinev, D.A. and Chernetsov, N.S., Magnetoreception systems in birds: a review of current research, Biol. Bull. Rev., 2014, vol. 5, no. 1, p. 46.

    Article  Google Scholar 

  11. Seleznev, V.P. and Selezneva, N.V., Navigatsionnaya bionika (Navigation Bionics), Moscow: Mashinostroenie, 1987.

  12. Kuranova, M.L., Pavlov, A.E., Spivak, I.M., et al., Effect of the hypomagnetic field on living systems, Vestn. S.-Peterb. Univ., Ser. 3. Biol., 2010, no. 4, p. 99.

  13. Sarimov, R.M., Bingi, V.N., and Milyaev, V.A., The influence of geomagnetic field compensation on human cognitive processes, Biophysics (Moscow), 2008, vol. 53, no. 5, p. 433. https://doi.org/10.1134/S0006350908050205

    Article  Google Scholar 

  14. Gurfinkel, Yu.I., Vasin, A.L., Matveeva, T.A., and Sasonko, M.L., Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate, Aviakosm. Ekol. Med., 2014, vol. 48, no. 2, p. 24.

    Google Scholar 

  15. Vasin, A.L., Shafirkin, A.V., Gurfinkel, Yu.I., Effect of artificial alternating geomagnetic field in the millihertz range on the heart rate variability indices, Aviakosm. Ekol. Med., 2019, vol. 53, no. 6, p. 62.

    Google Scholar 

  16. Culver, B.H., Graham, B.L., Coates, A.L., et al., Recommendations for a standardized pulmonary function report an official American Thoracic Society Technical Statement, Am. J. Respir. Crit. Care Med., 2017, vol. 196, no. 11, p. 1463.

    Article  PubMed  Google Scholar 

  17. Fullmer, S., Benson-Davies, S., Earthman, C.P., et al., Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals, J. Acad. Nutr. Diet., 2015, vol. 115, no. 9, p. 1417.

    Article  PubMed  Google Scholar 

  18. Heart rate variability: standards of measurement, physiological interpretation, and clinical use: Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation, 1996, vol. 93, no. 5, p. 1043.

  19. Baevskii, R.M., Ivanov, G.G., Chireikin, L.V., et al., Analysis of heart rate variability using various electrocardiographic systems (guidelines), Vestn. Aritmol., 2001, no. 24, p. 65.

  20. Luchitskaya, E.S., Funtova, I.I., Tank, J., et al., Measuring indicators characterizing early vascular aging using the oscillometric method in space flight, Aviakosm. Ekol. Med., 2021, vol. 55, no. 6, p. 23.

    Google Scholar 

  21. Weber, T., Wassertheurer, S., Hametner, B., et al., Noninvasive methods to assess pulse wave velocity: comparison with the invasive gold standard and relationship with organ damage, J. Hypertens., 2015, vol. 33, no. 5, p. 1023.

    Article  CAS  PubMed  Google Scholar 

  22. Kerdo, I., Ein aus Daten der Blutzirkulation kalkulierter Index zur Beurteilung der vegetativen Tonuslage, Acta Neuroveg., 1966, vol. 29, no. 2, p. 250.

    Article  CAS  Google Scholar 

  23. Gesche, H., Grosskurth, D., Kuchler, G., and Patzak, A., Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff- based method, Eur. J. Appl. Physiol., 2012, vol. 112, no. 1, p. 309.

    Article  PubMed  Google Scholar 

  24. Kemp, D.T., Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am., 1978, vol. 64, no. 5, p. 1386.

    Article  CAS  PubMed  Google Scholar 

  25. Brown, A.M. and Kemp, D.T., Suppressibility of the 2f1-f2 stimulated acoustic emissions in gerbil and man, Hear. Res., 1984, vol. 13, no. 1, p. 29.

    Article  CAS  PubMed  Google Scholar 

  26. Gorga, M.P., Neely, S.T., Bergman, B.M., et al., A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects, J. Acoust. Soc. Am., 1993, vol. 94, no. 5, p. 2639.

    Article  CAS  PubMed  Google Scholar 

  27. Gnezditskii, V.V., Vyzvannye potentsialy mozga v klinicheskoi praktike (Evoked Brain Potentials in Clinical Practice), Moscow: MEDpress Inform, 2003.

  28. Schomer, D.L. and Lopes da Silva, F.H., Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Phaladelphia: Wolters Kluwer, 2011, 6th ed., p. 1205.

  29. Demin, A.V., Suvorov, A.V., and Orlov, O.I., Characteristics of healthy men hemodynamics in a hypomagnetic environment, Aviakosm. Ekol. Med., 2021, vol. 55, no. 2, p. 63.

    Google Scholar 

  30. Beischer, D.E., Biomagnetics, Ann. N.Y. Acad. Sci., 1965, vol. 134, no. 1, p. 454.

    Article  CAS  PubMed  Google Scholar 

  31. Fu, J.-P., Mo, W.-Ch., Liu, Y., and He, R.-Q., Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field, Bioelectromagnetics, 2016, vol. 37, no. 4, p. 212.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.Yu. Bersenev for providing materials for the section “Assessment of heart rate variability (HRV) using the Holter monitoring technique.”

Funding

The experimental study was carried out within the basic subject of the Russian Academy of Sciences 64.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Kukanov or V. B. Rusanov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were carried out in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates, and were approved by the local bioethical committee of the Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow). Minutes No. 514 dated June 4, 2019.

CONFLICT OF INTEREST

The authors declare there is an absence of an obvious and potential conflict of interest related to the publication of this article.

INFORMED CONSENT

Each participant in the study provided a voluntary written informed consent signed by him after explaining to him the potential risks and benefits, as well as the nature of the upcoming study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukanov, V.Y., Vasin, A.L., Demin, A.V. et al. Effect of Simulated Hypomagnetic Conditions on Some Physiological Paremeters under 8-Hour Exposure. Experiment Arfa-19. Hum Physiol 49, 138–146 (2023). https://doi.org/10.1134/S0362119722600400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722600400

Keywords:

Navigation