Skip to main content
Log in

Features of the Influence of the Autonomic Nervous System on the Regulatory and Metabolic Parameters of Lymphocytes in Healthy Children and Children with Special Health Needs

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The aim of the study was to analyze the content of biogenic monoamines (catecholamins and serotonin) and metabolic parameters (activities of succinate dehydrogenase and acid phosphatase) of lymphocytes in normal children and in children with special health needs, depending on the type of autonomic regulation. The survey involved 168 children of primary school age, of these, 114 relatively healthy children and 54 children with intellectual disabilities (mild (F70) and moderate (F71) degree of mental retardation). The groups were comparable in terms of gender and age. In both studied groups, an increase in the parameters of succinate dehydrogenase and catecholamines from vagotonic to hypersympathicotonic types of the initial vegetative tone was recorded. Also, in the group of children with special health needs, a decrease in the activity of acid phosphatase was found as the activity of the sympathetic division of the autonomic nervous system (ANS) increased. In general, in healthy children, against the background of the prevailing eutonic type of autonomic regulation, the optimal regulatory and metabolic parameters of the cell are fixed, which determines sufficient adaptive responses in this group. In the group of children with disabilities, the dominant activity of the sympathetic division of the autonomic nervous system manifests itself at the cellular level as hypercatecholaminemia, reduced levels of serotonin, and acid phosphatase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rudd, K.L. and Yates, T.M., The implications of sympathetic and parasympathetic regulatory coordination for understanding child adjustment, Dev. Psychobiol., 2018, vol. 60, no. 8, p. 1023.

    Article  PubMed  Google Scholar 

  2. Mulkey, S.B. and du Plessis, A.J., Autonomic nervous system development and its impact on neuropsychiatric outcome, Pediatr. Res., 2019, vol. 85, no. 2, p. 120.

    Article  PubMed  Google Scholar 

  3. Neudakhin, E.V. and Moreno, I.G., On the question of the pathogenesis of atherosclerosis and correction of atherogenic disorders in children, Russ. Med. Zh., 2018, no. 9, p. 62.

  4. Peña, S., Baccichet, E., Urbina, M., et al., Effect of mirtazapine treatment on serotonin transporter in blood peripheral lymphocytes of major depression patients, Int. Immunopharmacol. 2005, vol. 5, no. 6, p. 1069.

    Article  PubMed  Google Scholar 

  5. Barkan, T., Peled, A., Modai, I., et al., Serotonin transporter characteristics in lymphocytes and platelets of male aggressive schizophrenia patients compared to non–aggressive schizophrenia patients, Eur. Neuropsychopharmacol., 2006, vol. 16, no. 8, p. 572.

    Article  CAS  PubMed  Google Scholar 

  6. Marazziti, D., Landi, P., Baroni, S., et al., The role of platelet/lymphocyte serotonin transporter in depression and beyond, Curr. Drug Targets, 2013, vol. 14, no. 5, p. 522.

    Article  CAS  PubMed  Google Scholar 

  7. Romay-Tallon, R., Rivera-Baltanas, T., Allen, J., et al., Comparative study of two protocols for quantitative image-analysis of serotonin transporter clustering in lymphocytes, a putative biomarker of therapeutic efficacy in major depression, Biomarker Res., 2017, vol. 5, p. 27.

    Article  Google Scholar 

  8. Baevsky, R.M., Kirillov, O.I., and Kletskin, S.Z., Matematicheskii analiz izmenenii serdechnogo ritma pri stresse (Mathematical Analysis of Changes in Heart Rate during Stress), Moscow: Nauka, 1984.

  9. Narcissov, R.P., Application of n-nitrotetrazolium violet for quantitative cytochemistry of human lymphocyte dehydrogenases, Arh. Anat., Gistol. Embriol., 1969, vol. 56, no. 5, p. 85.

    Google Scholar 

  10. Goldberg, A.F. and Barka, T., Acid phosphatase activity in human blood cells, Nature, 1962, vol. 195, no. 3438, p. 297.

    Article  CAS  PubMed  Google Scholar 

  11. Novitskaya, V.P., Modification of the method for determining monoamines in leukocytes on peripheral blood smears, Klin. Lab. Diagn., 2000, no. 1, p. 24.

  12. Smirnova, O.V., Ovcharenko, E.S., Kasparov, E.V., and Fefelova, V.V., Parameters of physical development of children with special health possibilities with various types of initial vegetative tonus, Ross. Fiziol. Zh. im. I.M. Sechenova, 2021, vol. 107, no. 1, p. 85.

    Google Scholar 

  13. Ince, L.M., Weber, J., and Scheiermann, C., Control of leucocyte trafficking by stress–associated hormones, Front. Immunol., 2018, vol. 9, p. 3143.

    Article  CAS  PubMed  Google Scholar 

  14. Kohler–Dauner, F., Roder, E., Krause, S., et al., Reduced caregiving quality measured during the strange situation procedure increases child’s autonomic nervous system stress response, Child Adolesc. Psychiatry Ment. Health, 2019, vol. 13, p. 41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wehrwein, E.A., Orer, H.S., and Barman, S.M., Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system, Compr. Physiol., 2016, vol. 6, no. 3, p. 1239.

    Article  PubMed  Google Scholar 

  16. Kolodyazhnaya, T.A., Zaitzeva, O.I., Zaitzeva, Gh.G., and Ignatova, I.A., Syndrome of autonomic dysfunction in children of primary school age: risk factors and structural and functional state of erythrocyte membranes, Sib. J. Life Sci. Agric., 2021, vol. 13, no. 4, p. 115.

    Google Scholar 

  17. Elkhatib, S.K., and Case, A.J., Autonomic regulation of T–lymphocytes: implications in cardiovascular disease, Pharmacol. Res., 2019, vol. 146, p. 104292.

    Article  Google Scholar 

  18. Riessen, R., Tschritter, O., Janssens, U., and Haap, M., Katecholamine: pro und kontra, Med. Klin. Intensivmed. Notfmed., 2016, vol. 111, no. 1, p. 37.

    Article  CAS  PubMed  Google Scholar 

  19. Dhalla, N.S., Ganguly, P.K., Bhullar, S.K., and Tappia, P.S., Role of catecholamines in the pathogenesis of diabetic cardiomyopathy, Can. J. Physiol. Pharmacol., 2019, vol. 97, no. 9, p. 815.

    Article  CAS  PubMed  Google Scholar 

  20. Shaikhelislamova, M.V., Sitdikova, A.A., and Sitdikov, F.G., Interrelations between the sympathoadrenal system, adrenal cortex, and autonomic tone in seven- to nine-year-old children, Hum. Physiol., 2008, vol. 34, no. 2, p. 206. https://doi.org/10.1134/S0362119708020114

    Article  CAS  Google Scholar 

  21. Sica, E., De Bernardi, F., Nosetti, L., et al., Catecholamines and children obstructive sleep apnea: a systematic review, Sleep Med., 2021, vol. 87, p. 227.

    Article  PubMed  Google Scholar 

  22. Kanova, M. and Kohout, P., Serotonin—its synthesis and roles in the healthy and the critically ill, Int. J. Mol. Sci., 2021, vol. 22, no. 9, p. 4837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sadykova, D.I., Nigmatullina, R.R., and Aflyatumova, G.N., The role of the serotonergic system in the development of cardiovascular diseases in children, Kazan. Med. Zh., 2015, vol. 96, no. 4, p. 665.

    Article  Google Scholar 

  24. Gostyukhina, A.A., Zamoshchina, T.A., Zaitsev, K.V., et al., Adaptive reactions of rats after light desynchronosis and physical exertion, Byull. Sib. Med., 2018, vol. 17, no. 3, p. 22.

    Article  Google Scholar 

  25. Carhart-Harris, R.L. and Nutt, D.J., Serotonin and brain function: a tale of two receptors, J. Psychopharmacol., 2017, vol. 31, no. 9, p. 1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brindley, R.L., Bauer, M.B., Walker, L.A., et al., Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter, Pharmacol. Res., 2019, vol. 140, p. 56.

    Article  CAS  PubMed  Google Scholar 

  27. Troitsky, M.S., Tokarev, A.R., and Panshina, M.V., The potential of nonpharmacological and pharmacological therapies of anxiety disorders (literature review), Vestn. Nov. Med. Tekhnol., 2018, vol. 25, no. 1, p. 61.

    Google Scholar 

  28. Hildreth, C.M., Padley, J.R., Pilowsky, P.M., and Goodchild, A.K., Impaired serotonergic regulation of heart rate may underlie reduced baroreflex sensitivity in an animal model of depression, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 294, no. 1, p. 474.

    Article  Google Scholar 

  29. Chang, W.H., Leem, I.H., Chi, M.H., et al., Prefrontal cortex modulates the correlations between brain–derived neurotrophic factor level, serotonin, and the autonomic nervous system, Sci. Rep., 2018, vol. 8, no. 1, p. 2558.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin, S., Lee, I.H., Tsai, H., et al., The association between plasma cholesterol and the effect of tryptophan depletion on heart rate variability, Kaohsiung J. Med. Sci., 2019, vol. 35, no. 7, p. 440.

    CAS  PubMed  Google Scholar 

  31. Settas, N., Faucz, F.R., and Stratakis, C.A., Succinate dehydrogenase (SDH) deficiency, carney triad and the epigenome, Mol. Cell. Endocrinol., 2018, vol. 469, p. 107.

    Article  CAS  PubMed  Google Scholar 

  32. Moosavi, B., Zhu, X.L., Yang, W.C., and Yang, G.F., Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function, Biol. Chem., 2020, vol. 401, no. 3, p. 319.

    Article  CAS  PubMed  Google Scholar 

  33. Rasheed, M. and Tarjan, G., Succinate dehydrogenase complex: an updated review, Arch. Pathol. Lab. Med., 2018, vol. 142, no. 12, p. 1564.

    Article  PubMed  Google Scholar 

  34. Farshbaf, M.J. and Kiani-Esfahani, A., Succinate dehydrogenase: prospect for neurodegenerative diseases, Mitochondrion, 2018, vol. 42, p. 77.

    Article  Google Scholar 

  35. Gur’eva E.N., Moreno, I.G., Neudakhin, E.V., et al., Vegetative status and state of tissue energy metabolism in children with metabolic syndrome and primary arterial hypertension, Vopr. Prakt. Pediatr., 2012, vol. 7, no. 2, p. 78.

    Google Scholar 

  36. Khunderyakova, N.V., Zakharchenko, M.V., Zakharchenko, A.V., et al., Signal action of succinate on the mitochondria studied by cytobiochemical method, Biol. Membr., 2012, vol. 29, no. 6, p. 442.

    CAS  Google Scholar 

  37. Fedotcheva, N., Leont’ev, D., and Kondrashova, M., Reciprocal effect of adrenaline and serotonin on oxidation of succinate and a-ketoglutarate in rat liver and brain homogenates, Mitochondrion, 2002, vol. 1, no. 6, p. 519.

    Google Scholar 

  38. Manhas, N., Duong, Q.V., Lee, P., et al., Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production, J. Biol. Chem. 2020, vol. 295, no. 45, p. 15262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Titko, O.V., Energy metabolism in the brain during oxidative stress, Vestn. Grodn. Gos. Univ., Ser. 5: Ekon., Sociol., Biol., 2019, vol. 9, no. 1, p. 144.

    Google Scholar 

  40. Anand, A. and Srivastava, P.K., A molecular description of acid phosphatase, Appl. Biochem. Biotechnol., 2012, vol. 167, no. 8, p. 2174.

    Article  CAS  PubMed  Google Scholar 

  41. Tsygankova, O.V., Bondareva, Z.G., Ragino, Yu.I., et al., Levels of marker lysosomal hydrolases in males of different age with ischemic heart disease through a lens of sex steroid levels, Ateroskleroz, 2015, vol. 11, no. 3, p. 42.

    Google Scholar 

  42. Aminova, G.G., Determination of acid phosphatase activity in nervous tissue, Neurosci. Behav. Physiol., 2017, vol. 47, no. 8, p. 1015. https://doi.org/10.1007/s11055-017-0505-0

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out at the expense of funds allocated for the implementation of the state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Smirnova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were carried out in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates, and approved by the local bioethical committee of the Scientific Research Committee of Medical Problems of the North (Krasnoyarsk).

CONFLICT OF INTEREST

The authors declare the absence of any obvious and potential conflict of interest related to the publication of this article.

INFORMED CONSENT

Parents or legal guardians of the study children signed a voluntary written informed consent after explaining the potential risks and benefits, as well as the nature of the upcoming study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, O.V., Ovcharenko, E.S., Kasparov, E.V. et al. Features of the Influence of the Autonomic Nervous System on the Regulatory and Metabolic Parameters of Lymphocytes in Healthy Children and Children with Special Health Needs. Hum Physiol 49, 147–154 (2023). https://doi.org/10.1134/S0362119722600357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722600357

Keywords:

Navigation