Skip to main content
Log in

Oculomotor Control Asymmetry in Antisaccade Task in Carriers of Val158Met Polymorphic Variants of the Cateholamine-O-Methyltransferase Gene

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The comprehensive assessment of the effect of the catecholamine-O-methyltransferase (COMT) gene Val158Met polymorphism on the antisaccade (AS) performance and the characteristics of slow potentials was carried out in the work. The analysis of saccade characteristics included the side of the stimulus presentation and the saccade direction. The study involved 43 male volunteers. In carriers of val allele, the latency variability (coefficient of variation, Kvar) was higher than in carriers of met/met genotype with significant differences for right-side saccades (performed in response to the left stimuli). Along with this, in carriers of val/val genotype, the amplitude of the negative shift associated with cortical activation was increased in the frontal regions of the cortex relative to carriers of the met/met genotype. These results indicate a definite advantage of met/met genotype carriers in AS performance. Specific asymmetries were found for different genotypes: in carriers of met/met homozygote, the errors’ percent was almost twice higher in response to the stimulus at the left than to the stimulus at the right; in carriers of val allele, the latency of saccades and Kvar for the left stimulus were significantly higher than that for the right one. The analysis showed a relative decrease in the efficiency of the right hemisphere in carriers of met/met genotype, and the left hemisphere in val/val genotype carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Goldman-Rakic, P.S., Cellular basis of working memory, Neuron, 1995, vol. 14, no. 3, p. 477.

    Article  CAS  PubMed  Google Scholar 

  2. Miller, E.K. and Cohen, J.D., An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci., 2001, vol. 24, p. 167.

    Article  CAS  PubMed  Google Scholar 

  3. Funahashi, S., Bruce, C.J., and Goldman-Rakic, P.S., Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas,” J. Neurosci., 1993, vol. 13, no. 4, p. 1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ott, T. and Nieder, A., Dopamine and cognitive control in prefrontal cortex, Trends Cognit. Sci., 2019, vol. 23, no. 3, p. 213.

    Article  Google Scholar 

  5. Vijayraghavan, S., Major, A.J., and Everling, S., Neuromodulation of prefrontal cortex in non-human primates by dopaminergic receptors during rule-guided flexible behavior and cognitive control, Front. Neural Circ., 2017, vol. 11, p. 91.

    Article  CAS  Google Scholar 

  6. Chen, J., Lipska, B.K., Halim, N., et al., Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain, Am. J. Hum. Genet., 2004, vol. 75, no. 5, p. 807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hallett, P.E., Primary and secondary saccades to goals defined by instructions, Vision Res., 1978, vol. 18, no. 10, p. 1279.

    Article  CAS  PubMed  Google Scholar 

  8. Levy, D.L., Mendell, N.R., and Holzman, P.S., The antisaccade task and neuropsychological tests of prefrontal cortical integrity in schizophrenia: empirical findings and interpretative considerations, World Psychiatry, 2004, vol. 3, no. 1, p. 32.

    PubMed  PubMed Central  Google Scholar 

  9. Hutton, S.B. and Ettinger, U., The antisaccade task as a research tool in psychopathology: a critical review, Psychophysiology, 2006, vol. 43, no. 3, p. 302.

    Article  PubMed  Google Scholar 

  10. McDowell, J.E., Dyckman, K.A., Austin, B.P., and Clementz, B.A., Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans, Brain Cognit., 2008, vol. 68, no. 3, p. 255.

    Article  Google Scholar 

  11. Turetsky, B.I., Calkins, M.E., Light, G.A., et al., Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures, Schizophr. Bull., 2007, vol. 33, no. 1, p. 69.

    Article  PubMed  Google Scholar 

  12. Ettinger, U., Kumari, V., Collier, D.A., et al., Catechol-O-methyltransferase (COMT) Val158Met genotype is associated with BOLD response as a function of task characteristic, Neuropsychopharmacology, 2008, vol. 33, no. 13, p. 3046.

    Article  CAS  PubMed  Google Scholar 

  13. Kattoulas, E., Evdokimidis, I., Stefanis, N.C., et al., Monitoring antisaccades: inter-individual differences in cognitive control and the influence of COMT and DRD4 genotype variations, Exp. Brain Res., 2010, vol. 203, no. 2, p. 453.

    Article  PubMed  Google Scholar 

  14. Kasparbauer, A.-M., Merten, N., Aichert, D.S., et al., Association of COMT and SLC6A3 polymorphisms with impulsivity, response inhibition and brain function, Cortex, 2015, vol. 71, p. 219.

    Article  PubMed  Google Scholar 

  15. Demily, C., Louchart-de-la-Chapelle, S., Nkam, I., et al., Does COMT Val158Met polymorphism influence P50 sensory gating, eye tracking or saccadic inhibition dysfunctions in schizophrenia? Psychiatry Res., 2016, vol. 246, p. 738.

    Article  CAS  PubMed  Google Scholar 

  16. Kirenskaya, A.V., Storozheva, Z.I., Gruden, M.A., and Sewell, R.D.E., COMT and GAD1 gene polymorphisms are associated with impaired antisaccade task performance in schizophrenic patients, Eur. Arch. Psychiatry Clin. Neurosci., 2018, vol. 268, no. 6, p. 571.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haraldsson, H.M., Ettinger, U., Magnusdottir, B.B., et al., Catechol-O-methyltransferase Val158Met polymorphism and antisaccade eye movements in schizophrenia, Schizophr. Bull., 2010, vol. 36, no. 1, p. 157.

    Article  PubMed  Google Scholar 

  18. Cameron, I.G.M., Wallace, D.L., Al-Zughoul, A., et al., Effects of tolcapone and bromocriptine on cognitive stability and flexibility, Psychopharmacology (Berlin), 2018, vol. 235, no. 4, p. 1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tucker, D.M. and Williamson, P.A., Asymmetric neural control systems in human self-regulation, Psychol. Rev., 1984, vol. 91, no. 2, p. 185.

    Article  CAS  PubMed  Google Scholar 

  20. Khomskaya, E.D., Asymmetry of brain parts, in Neiropsikhologiya segodnya (Neuropsychology Today), Moscow: Mosk. Gos. Univ., 1995, p. 14.

  21. Slavutskaya, M.V. and Shul’govskiĭ, V.V., Potential of the human cerebral cortex prior to antisaccades, Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 2004, vol. 54, no. 3, p. 320.

    Google Scholar 

  22. Klein, C., Heinks, T., Andresen, B., et al., Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia, Biol. Psychiatry, 2000, vol. 47, no. 11, p. 978.

    Article  CAS  PubMed  Google Scholar 

  23. Birbaumer, N., Elbert, T., Canavan, A.G.M., and Rockstroh, B., Slow potentials of cerebral cortex and behavior, Physiol. Rev., 1990, vol. 70, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  24. Brunia, C.H., van Boxtel, G.J., Böcker, K.B., et al., Negative slow waves as indices of anticipation: the Bereitschaftspotential, the contingent negative variation, and the stimulus-preceding negativity, in The Oxford Handbook of Event-related Potential Components, Luck, S. and Kappenman, E., Eds., New York, NY: Oxford Univ. Press, 2012, p. 196.

    Google Scholar 

  25. Everling, S., Krappmann, P., and Flohr, H., Cortical potentials preceding pro- and antisaccades in man, Electroencephalogr. Clin. Neurophysiol., 1997, vol. 102, no. 4, p. 356.

    Article  CAS  PubMed  Google Scholar 

  26. Kirenskaya, A.V., Myamlin, V.V., Novototsky-Vlasov, V.Y., et al., The contingent negative variation laterality and dynamics in antisaccade task in normal and unmedicated schizophrenic subjects, Span. J. Psychol., 2011, vol. 14, no. 2, p. 869.

    Article  PubMed  Google Scholar 

  27. Papaleo, F., Sannino, S., Piras, F., and Spalletta, G., Sex-dichotomous effects of functional COMT genetic variations on cognitive functions disappear after menopause in both health and schizophrenia, Eur. Neuropsychopharmacol., 2015, vol. 25, no. 12, p. 2349.

    Article  CAS  PubMed  Google Scholar 

  28. Sannino, S., Gozzi, A., Cerasa, A., et al., Genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans, Cereb. Cortex, 2015, vol. 25, no. 9, p. 2529.

    Article  PubMed  Google Scholar 

  29. Wu, S., Upadhyay, N., Lu, J., et al., Interaction of catechol-O-methyltransferase Val158Met polymorphism and sex influences association of parietal intrinsic functional connectivity and immediate verbal memory, Brain Behav., 2020, vol. 10, no. 10, p. e01784.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Novototsky-Vlasov, V.Yu., Garah, J.V., and Kovalev, V.P., A method for repetitive artifact suppression in multichannel EEG recordings, Hum. Physiol., 2007, vol. 33, no. 2, p. 231.

    Article  Google Scholar 

  31. Ruchkin, D.S., Sutton, S., Mahaffey, D., and Glaser, J., Terminal CNV in the absence of motor response, Electroencephalogr. Clin. Neurophysiol., 1986, vol. 63, no. 5, p. 445.

    Article  CAS  PubMed  Google Scholar 

  32. Khonsari, R.H., Lobel, E., Milea, D., et al., Lateralized parietal activity during decision and preparation of saccades, Neuroreport, 2007, vol. 18, no. 17, p. 1797.

    Article  PubMed  Google Scholar 

  33. Smyrnis, N., Karantinos, T., Malogiannis, I., et al., Larger variability of saccadic reaction times in schizophrenia patients, Psychiatry Res., 2009, vol. 168, no. 2, p. 129.

    Article  PubMed  Google Scholar 

  34. Schall, J.D., The neural selection and control of saccades by the frontal eye field, Philos. Trans. R. Soc. B, 2002, vol. 357, no. 1424, p. 1073.

    Article  Google Scholar 

  35. O’Donnell, P., Lewis, B.L., Lerman, D., et al., Effects of neonatal hippocampal lesions on prefrontal cortical pyramidal cell responses to VTA stimulation, Soc. Neurosci. Abstr., 1999, vol. 25, p. 1659.

    Google Scholar 

  36. Winterer, G., Coppola, R., Goldberg, T.E., et al., Prefrontal broadband noise, working memory, and genetic risk for schizophrenia, Am. J. Psychiatry, 2004, vol. 161, no. 3, p. 490.

    Article  PubMed  Google Scholar 

  37. Ira, E., Zanoni, M., Ruggeri, M., et al., COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation, J. Psychiatry Neurosci., 2013, vol. 38, no. 6, p. 366.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nogueira, N.G.H.M., Fernandes, L., Ferreira, B.P., et al., Association between the catechol-O-methyltransferase (COMT) Val158Met polymorphism and manual performance asymmetries, Perceptual Motor Skills, 2019, vol. 126, no. 3, p. 349.

    Article  PubMed  Google Scholar 

  39. Tunbridge, E.M., Harrison, P.J., and Weinberger, D.R., Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond, Biol. Psychiatry, 2006, vol. 60, no. 2, p. 141.

    Article  CAS  PubMed  Google Scholar 

  40. Mier, D., Kirsch, P., and Meyer-Lindenberg, A., Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis, Mol. Psychiatry, 2010, no. 15, p. 918.

  41. Egan, M.F., Goldberg, T.E., Kolachana, B.S., et al., Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 12, p. 6917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shehzad, Z., DeYoung, C.G., Kang, Y., et al., Interaction of COMT Val158Met and externalizing behavior: relation to prefrontal brain activity and behavioral performance, NeuroImage, 2012, vol. 60, no. 4, p. 2158.

    Article  CAS  PubMed  Google Scholar 

  43. Seamans, J.K., Gorelova, N., Durstewitz, D., and Yang, C.R., Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons, J. Neurosci., 2001, vol. 21, no. 10, p. 3628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kirenskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were performed in accordance with the principles of biomedical ethics formulated in the 1964 Helsinki Declaration and its later amendments and and approved by the local Bioethical Committee of the Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation (Moscow).

CONFLICT OF INTEREST

The authors declare that they have no obvious and potential conflicts of interest related to the publication of this article.

INFORMED CONSENT

Each participant involved in the study provided a voluntary written informed consent, signed by him after explaining the potential risks and benefits, as well as the nature of the upcoming study.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirenskaya, A.V., Ryabova, A.M., Gruden, M.A. et al. Oculomotor Control Asymmetry in Antisaccade Task in Carriers of Val158Met Polymorphic Variants of the Cateholamine-O-Methyltransferase Gene. Hum Physiol 47, 260–269 (2021). https://doi.org/10.1134/S0362119721030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721030075

Keywords:

Navigation