Skip to main content
Log in

Heart Rate Variability as a Potential Non-invasive Marker of Blood Glucose Level

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Currently, monitoring of blood glucose level (BGL) is constrained by the invasive nature of BGL measures. We investigated heart rate variability (HRV) parameters as potential non-invasive markers of BGL. Healthy volunteers (n = 25; aged 27 ± 9 years) uninhibited by regular medications or chronic illness were recruited for this study. BGL and HRV were assessed during fasting (9:00 am), postprandial (12:00 pm), and postabsorptive (3:00 pm) periods using self-monitoring of blood glucose techniques and ten-minute electrocardiogram, respectively. Frequency-domain HRV measures, which estimate contributions of sympathetic and parasympathetic systems to autonomic modulation of the heart, were correlated against BGL data with the following significant (p < 0.05) findings. The change in BGL from fasting to postprandial levels was negatively correlated with fasting low frequency (LF) power and total power (TP). Postprandial BGL was negatively associated with fasting LF and TP, as well as with postprandial LF, high frequency (HF), and TP. The change in BGL from postprandial to postabsorptive levels was positively correlated with fasting LF power, as well as with postprandial LF, HF, and TP. Frequency-domain HRV parameters may be useful in predicting the magnitude and direction of acute fluctuations in BGL, and further research could develop them as non-invasive markers of BGL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cho, N., Shaw, J., Karuranga, S., et al., IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract., 2018, vol. 138, p. 271.

    Article  CAS  PubMed  Google Scholar 

  2. American Diabetes Association, Diagnosis and classification of diabetes mellitus, Diabetes Care, 2010, vol. 33, no. 1, p. 62.

    Article  Google Scholar 

  3. Andersen, L.B., Mota, J., and Di Pietro, L., Update on the global pandemic of physical inactivity, Lancet, 2016, vol. 388, no. 1005, p. 1255.

    Article  PubMed  Google Scholar 

  4. Carrera-Bastos, P., Fontes-Villalba, M., O’Keefe, J.H., et al., The western diet and lifestyle and diseases of civilization, Res. Rep. Clin. Cardiol., 2011, vol. 2, p. 15.

    Google Scholar 

  5. Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., et al., Management of hyperglycemia in type 2 diabetes: a patient-centered approach, Diabetes Care, 2012, vol. 35, no. 6, p. 1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brownlee, M., The pathobiology of diabetic complications a unifying mechanism, Diabetes, 2005, vol. 54, no. 6, p. 1615.

    Article  CAS  PubMed  Google Scholar 

  7. Pop-Busui, R., Evans, G.W., Gerstein, H.C., et al., Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, Diabetes Care, 2010, vol. 33, no. 7, p. 1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vinik, A.I., Erbas, T., and Casellini, C.M., Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease, J. Diabetes Invest, 2013, vol. 4, no. 1, p. 4.

    Article  CAS  Google Scholar 

  9. Wulsin, L.R., Horn, P.S., Perry, J.L., et al., Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality, J. Clin. Endocrinol. Metab., 2015, vol. 100, no. 6, p. 2443.

    Article  CAS  PubMed  Google Scholar 

  10. Ray, K.K., Seshasai, S.R.K., Wijesuriya, S., et al., Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials, Lancet, 2009, vol. 373, no. 9677, p. 1765.

    Article  CAS  PubMed  Google Scholar 

  11. Shima, K., Komatsu, M., Kawahara, K., et al., Stringent glycaemic control prolongs survival in diabetic patients with end-stage renal disease on haemodialysis, Nephrology, 2010, vol. 15, no. 6, p. 632.

    Article  CAS  PubMed  Google Scholar 

  12. Beagley, J., Guariguata, L., Weil, C., and Motala, A.A., Global estimates of undiagnosed diabetes in adults, Diabetes Res. Clin. Pract., 2014, vol. 103, no. 2, p. 150.

    Article  PubMed  Google Scholar 

  13. Michaelides, C., Daja, M., Peterson, D., and Conroy, D., An HbA1c mapping tool helps identify where interventions and strategies for change need to be targeted, The Mapping Glycaemic Control Across Australia (MGCAA) project, 2012. http://www.glycomate.com/changingdiabetes/.

  14. Vashist, S.K., Non-invasive glucose monitoring technology in diabetes management: a review, Anal. Chim. Acta, 2012, vol. 750, p. 16.

    Article  CAS  PubMed  Google Scholar 

  15. Halldorsdottir, S., Warchal-Windham, M.E., Wallace, J.F., et al., Accuracy evaluation of five blood glucose monitoring systems: the North American Comparator Trial, J. Diabetes Sci. Technol., 2013, vol. 7, no. 5, p. 1294.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tack, C., Pohlmeier, H., Behnke, T., et al., Accuracy evaluation of five blood glucose monitoring systems obtained from the pharmacy: a European multicenter study with 453 subjects, Diabetes Technol. Ther., 2012, vol. 14, no. 4, p. 330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong, W.M., Chua, S.S., and Ng, C.J., Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study, Patient Preference Adherence, 2014, vol. 8, no. 2014, p. 237.

  18. Bandodkar, A.J. and Wang, J., Non-invasive wearable electrochemical sensors: a review, Trends Biotechnol., 2014, vol. 32, no. 7, p. 363.

    Article  CAS  PubMed  Google Scholar 

  19. Do Amaral, C.E.F. and Wolf, B., Current development in non-invasive glucose monitoring, Med. Eng. Phys., 2008, vol. 30, no. 5, p. 541.

    Article  Google Scholar 

  20. Kleiger, R.E., Miller, J.P., Bigger, J.T., and Moss, A.J., Decreased heart rate variability and its association with increased mortality after acute myocardial infarction, Am. J. Cardiol., 1987, vol. 59, no. 4, p. 256.

    Article  CAS  PubMed  Google Scholar 

  21. Jaiswal, M., Urbina, E.M., Wadwa, R.P., et al., Reduced heart rate variability among youth with type 1 diabetes the SEARCH CVD study, Diabetes Care, 2013, vol. 36, no. 1, p. 157.

    Article  CAS  PubMed  Google Scholar 

  22. Javorka, M., Javorková, J., Tonhajzerová, I., et al., Heart rate variability in young patients with diabetes mellitus and healthy subjects explored by Poincaré and sequence plots, Clin. Physiol. Funct. Imaging, 2005, vol. 25, no. 2, p. 119.

    Article  PubMed  Google Scholar 

  23. Kudat, H., Akkaya, V., Sozen, A., et al., Heart rate variability in diabetes patients, J. Int. Med. Res., 2006, vol. 34, no. 3, p. 291.

    Article  CAS  PubMed  Google Scholar 

  24. Mirza, M. and Lakshmi, A., A comparative study of heart rate variability in diabetic subjects and normal subjects, Int. J. Biomed. Adv. Res., 2012, vol. 3, no. 8, p. 640.

    Article  Google Scholar 

  25. Zygmunt, A. and Stanczyk, J., Methods of evaluation of autonomic nervous system function, Arch. Med. Sci., 2010, vol. 6, no. 1, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buccelletti, E., Gilardi, E., Scaini, E., et al., Heart rate variability and myocardial infarction: systematic literature review and metanalysis, Eur. Rev. Med. Pharmacol. Sci., 2009, vol. 13, no. 4, p. 299.

    CAS  PubMed  Google Scholar 

  27. Huikuri, H.V. and Stein, P.K., Clinical application of heart rate variability after acute myocardial infarction, Front. Physiol., 2012, vol. 3, p. 41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thayer, J.F., Yamamoto, S.S., and Brosschot, J.F., The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors, Int. J. Cardiol., 2010, vol. 141, no. 2, p.122.

    Article  PubMed  Google Scholar 

  29. Spallone, V., Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet, Diabetes Metab. J., 2019, vol. 43, no. 1, p. 3.

    Article  PubMed  Google Scholar 

  30. Jarczok, M.N., Li, J., Mauss, D., et al., Heart rate variability is associated with glycemic status after controlling for components of the metabolic syndrome, Int. J. Cardiol., 2013, vol. 167, no. 3, p. 855.

    Article  PubMed  Google Scholar 

  31. Klimontov, V.V., Myakina, N.E., and Tyan, N.V., Heart rate variability is associated with interstitial glucose fluctuations in type 2 diabetic women treated with insulin, SpringerPlus, 2016, vol. 5, no. 337, p. 1.

    Article  CAS  Google Scholar 

  32. Lutfi, M.F. and Elhakeem, R.F., Effect of fasting blood glucose level on heart rate variability of healthy young adults, PLoS One, 2016, vol. 11, no. 7, p. e0159820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rothberg, L.J., Lees, T., Clifton-Bligh, R., and Lal, S., Association between heart rate variability measures and blood glucose levels: implications for noninvasive glucose monitoring for diabetes, Diabetes Technol. Ther., 2016, vol. 18, no. 6, p. 366.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, J.P., Larson, M.G., O’Donnell, C.J., et al., Association of hyperglycemia with reduced heart rate variability (the Framingham Heart Study), Am. J. Cardiol., 2000, vol. 86, no. 3, p. 309.

    Article  CAS  PubMed  Google Scholar 

  35. Stein, P., Barzilay, J., Domitrovich, P., et al., The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study, Diabetes Med., 2007, vol. 24, no. 8, p. 855.

    Article  CAS  Google Scholar 

  36. Weissman, A., Lowenstein, L., Peleg, A., et al., Power spectral analysis of heart rate variability during the 100-g oral glucose tolerance test in pregnant women, Diabetes Care, 2006, vol. 29, no. 3, p. 571.

    Article  PubMed  Google Scholar 

  37. Kalopita, S., Liatis, S., Thomakos, P., et al., Relationship between autonomic nervous system function and continuous interstitial glucose measurement in patients with type 2 diabetes, J. Diabetes Res., 2014, vol. 2014, art. ID 835392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kanaley, J.A., Baynard, T., Franklin, R.M., et al., The effects of a glucose load and sympathetic challenge on autonomic function in obese women with and without type 2 diabetes mellitus, Metabolism, 2007, vol. 56, no. 6, p. 778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Avignon, A., Radauceanu, A., and Monnier, L., Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes, Diabetes Care, 1997, vol. 20, no. 12, p. 1822.

    Article  CAS  PubMed  Google Scholar 

  40. Monnier, L., Lapinski, H., and Colette, C., Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1c, Diabetes Care, 2003, vol. 26, no. 3, p. 881.

    Article  PubMed  Google Scholar 

  41. Kilinc, O., Cincin, A., Pehlivan, A., et al., Assessment of time and frequency domain parameters of heart rate variability and interictal cardiac rhythm abnormalities in drug-naïve patients with idiopathic generalized epilepsy, J. Epilepsy Res. 2016, vol. 6, no. 1, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wolever, T.M., Chiasson, J.-L., Csima, A., et al., Variation of postprandial plasma glucose, palatability, and symptoms associated with a standardized mixed test meal versus 75 g oral glucose, Diabetes Care, 1998, vol. 21, no. 3, p. 336.

    Article  CAS  PubMed  Google Scholar 

  43. Freckmann, G., Schmid, C., Baumstark, A., et al., System accuracy evaluation of 43 blood glucose monitoring systems for self-monitoring of blood glucose according to DIN EN ISO 15197, J. Diabetes Sci. Tech-nol., 2012, vol. 6, no. 5, p. 1060.

    Article  Google Scholar 

  44. Morgan, L.M., Shi, J.-W., Hampton, S.M., and Frost, G., Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers, Br. J. Nutr., 2012, vol. 108, no. 7, p.1286.

    Article  CAS  PubMed  Google Scholar 

  45. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy, Geneva: World Health Org., 2010.

  46. Pickering, T.G., Hall, J.E., Appel, L.J., et al., Recommendations for blood pressure measurement in humans and experimental animals, Circulation, 2005, vol. 111, no. 5, p. 697.

    Article  PubMed  Google Scholar 

  47. Melzig, C.A., Weike, A.I., Hamm, A.O., and Thayer, J.F., Individual differences in fear-potentiated startle as a function of resting heart rate variability: implications for panic disorder, Int. J. Psychophysiol., 2009, vol. 71, no. 2, p. 109.

    Article  PubMed  Google Scholar 

  48. McNames, J. and Aboy, M., Reliability and accuracy of heart rate variability metrics versus ECG segment duration, Med. Biol. Eng. Comput., 2006, vol. 44, no. 9, p. 747.

    Article  PubMed  Google Scholar 

  49. Pichon, A., Roulaud, M., Antoine-Jonville, S., et al., Spectral analysis of heart rate variability: interchangeability between autoregressive analysis and fast Fourier transform, J. Electrocardiol., 2006, vol. 39, no. 1, p. 31.

    Article  PubMed  Google Scholar 

  50. Tarvainen, M.P., Niskanen, J.-P., Lipponen, J.A., et al., Kubios HRV—heart rate variability analysis software, Comput. Methods Progr. Biomed., 2014, vol. 113, no. 1, p. 210.

    Article  Google Scholar 

  51. Penčić-Popović, B., Ćelić, V., Ćosić, Z., et al., Heart rate variability and increased risk for developing type 2 diabetes mellitus, Vojnosanit. Pregl., 2014, vol. 71, no. 12, p. 1109.

    Article  PubMed  Google Scholar 

  52. Sztajzel, J., Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system, Swiss Med. Wkly., 2004, vol. 134, p. 514.

    PubMed  Google Scholar 

  53. Delaney, J.P.A. and Brodie, D.A., Effects of short-term psychological stress on the time and frequency domains of heart-rate variability, Percept. Mot. Skills, 2000, vol. 91, no. 2, p. 515.

    Article  CAS  PubMed  Google Scholar 

  54. Kobayashi, H., Park, B.-J., and Miyazaki, Y., Normative references of heart rate variability and salivary alpha-amylase in a healthy young male population, J. Physiol. Anthropol., 2012, vol. 31, no. 1, p. 9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramaekers, D., Ector, H., Aubert, A.E., et al., Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective? Eur. Heart J., 1998, vol. 19, no. 9, p. 1334.

    Article  CAS  PubMed  Google Scholar 

  56. Benichou, T., Pereira, B., Mermillod, M., et al., Heart rate variability in type 2 diabetes mellitus: a systematic review and meta–analysis, PLoS One, 2018, vol. 13, no. 4, p. e0195166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. França da Silva, A.K., da Costa de Rezende Barbosa, M.P., Vanderlei, F.M., et al., Application of heart rate variability in diagnosis and prognosis of individuals with diabetes mellitus: systematic review, Ann. Noninvasive Electrocardiol., 2016, vol. 21, no. 3, p. 223.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Valensi, P., Pariès, J., Attali, J.R., et al., Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—the French multicenter study, Metabolism, 2003, vol. 52, no. 7, p. 815.

    Article  CAS  PubMed  Google Scholar 

  59. Wheeler, T. and Watkins, P., Cardiac denervation in diabetes, Br. Med. J., 1973, vol. 4, no. 5892, p. 584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lefrandt, J.D., Mulder, M.C., Bosma, E., et al., Inverse relationship between blood glucose and autonomic function in healthy subjects, Diabetes Care, 2000, vol. 23, no. 12, p. 1862.

    Article  CAS  PubMed  Google Scholar 

  61. D’alessio, D.A., Kieffer, T.J., Taborsky, G.J., Jr., and Havel, P.J., Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques, J. Clin. Endocrinol. M-etab., 2001, vol. 86, no. 3, p. 1253.

    Article  Google Scholar 

  62. Nederkoorn, C., Smulders, F., and Jansen, A., Cephalic phase responses, craving and food intake in normal subjects, Appetit, 2000, vol. 35, no. 1, p. 45.

    Article  CAS  Google Scholar 

  63. Tillil, H., Shapiro, E.T., Miller, M.A., et al., Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans, Am. J. Physiol., 1988, vol. 254, no. 3, p. E349.

    CAS  PubMed  Google Scholar 

  64. Bowes, S., Hennessy, T., Umpleby, A., et al., Measurement of glucose metabolism and insulin secretion during normal pregnancy and pregnancy complicated by gestational diabetes, Diabetologia, 1996, vol. 39, no. 8, p. 976.

    Article  CAS  PubMed  Google Scholar 

  65. Heathers, J.A., Everything Hertz: methodological issues in short-term frequency-domain HRV, Front. Physiol., 2014, vol. 5, p. 177.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Massin, M.M., Maeyns, K., Withofs, N., et al., Circadian rhythm of heart rate and heart rate variability, Arch. Dis. Child., 2000, vol. 83, no. 2, p. 179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jensen-Urstad, K., Storck, N., Bouvier, F., et al., Heart rate variability in healthy subjects is related to age and gender, Acta Physiol. Scand., 1997, vol. 160, no. 3, p. 235.

    Article  CAS  PubMed  Google Scholar 

  68. O’Brien, I., O’Hare, P., and Corrall, R., Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function, Br. Heart J., 1986, vol. 55, no. 4, p. 348.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ding, S. and Schumacher, M., Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review, Sensors, 2016, vol. 16, no. 4, p. 589.

    Article  Google Scholar 

  70. Cichosz, S.L., Frystyk, J., Hejlesen, O.K., et al., A novel algorithm for prediction and detection of hypoglycemia based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes, J. Diabetes Sci. Technol., 2014, vol. 8, no. 4, p. 731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schäfer, A. and Vagedes, J., How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram, Int. J. Cardiol., 2013, vol. 166, no. 1, p. 15.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the Neuroscience Research Unit of the University of Technology Sydney for providing the equipment and facilities necessary to complete this study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Roderick Clifton-Bligh, Ann M Simpson, Najah Nassif and Sara Lal; Data curation, Ty Lees; Formal analysis, Jaymen L Elliott; Investigation, Luke R Jarman; Methodology, Luke R Jarman, Jaymen L Elliott and Sara Lal; Resources, Ty Lees; Supervision, Roderick Clifton-Bligh, Ann M Simpson, Najah Nassif and Sara Lal; Writing—original draft, Luke R Jarman; Writing—review & editing, Ty Lees, Jaymen Elliott, Roderick Clifton-Bligh, Ann M Simpson, Najah Nassif and Sara Lal.

Corresponding author

Correspondence to S. Lal.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarman, L.R., Elliott, J.L., Lees, T. et al. Heart Rate Variability as a Potential Non-invasive Marker of Blood Glucose Level. Hum Physiol 47, 209–218 (2021). https://doi.org/10.1134/S0362119721020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721020031

Keywords:

Navigation