Skip to main content
Log in

Changes in the Profile of Urine Proteins Associated with the Cardiovascular System in a Group of Healthy Young Men in Response to a Locomotor Test with a Stepwise Increasing Load

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The prospects of interplanetary missions make it relevant to develop standard tests to find criteria for the correction of preventive measures in a long space flight in order to ensure a peak in physical performance by the time the interplanetary activity is completed. Currently, tests are being developed to assess physical performance. One of them can be the currently developed locomotor test with a stepwise increasing load in the active mode of movement of the treadmill. It is of interest to assess the effect of this load on changes in the profile of proteins associated with the cardiovascular system from the standpoint of the possibility of using them as markers of its response to physical activity. In article analyzes the results of an experimental study of the proteome of human urine after a dosed step-increasing load and discusses the possible role of the identified proteins that can be attributed to the functioning of the cardiovascular system. The study involved practically healthy volunteers aged 18.6 ± 0.7 years, weighing 75.7 ± 8 kg (n = 12). The urine proteome was evaluated by chromatography-mass spectrometry and analyzed by bioinformatics methods. For the first time, data on the proteomic response to a locomotor test with a stepwise increasing load in the active mode of web movement in a group homogeneous in autonomic status are presented. As a result of the analysis, 429 proteins were identified, 69 of which significantly changed. Based on bioinformatics analysis, processes related to the work of the heart, vascular tone, and vascular permeability were identified. Ten proteins are described that are associated with the processes of the quick response of the cardiovascular system to dosed physical activity. The obtained results will help in choosing standard criteria for assessing the physiological cost of physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Griffin, K.L., Woodman, C.R., Price, E.M., et al., Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training, Circulation, 2001, vol. 104, no. 12, p. 1393.

    Article  CAS  PubMed  Google Scholar 

  2. Heaps, C.L., Mattox, M.L., Kelly, K.A., et al., Exercise training increases basal tone in arterioles distal to chronic coronary occlusion, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 290, no. 3, p. 1128.

    CAS  Google Scholar 

  3. Fomina, E.V., Lisova, N.Iu., Kireev, K.S., et al., Kidney function and urine protein composition in healthy volunteers during space station fitness tests, Aerosp. Med. Hum. Perform., 2015, vol. 86, no. 5, p. 1.

    Article  Google Scholar 

  4. Baevskii, R.M., Ivanov, G.G., Chireikin, L.V., et al., Analysis of heart rate variability using various electrocardiographic systems (a guidelines), Vestn. Aritmol., 2001, no. 24, p. 65.

  5. Traustadóttir, T., Bosch, P.R., Cantu, T., and Matt, K.S., Hypothalamic-pituitary-adrenal axis response and recovery from high-intensity exercise in women: effects of aging and fitness, J. Clin. Endocrinol. Metab., 2004, vol. 89, no. 7, p. 3248.

    Article  PubMed  CAS  Google Scholar 

  6. O’Sullivan, S.E. and Bell, C., Training reduces autonomic cardiovascular responses to both exercise-dependent and -independent stimuli in humans, Auton. Neurosci., 2001, vol. 91, nos. 1–2, p. 76.

    Article  PubMed  Google Scholar 

  7. Thayer, J.F., Ahs, F., Fredrikson, M., et al., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 2, p. 747.

    Article  PubMed  Google Scholar 

  8. Beissner, F., Meissner, K., Bär, K.J., and Napadow, V., The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function, J. Neurosci., 2013, vol. 33, no. 25, p. 10503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Little, H.C., Tan, S.Y., Cali, F.M., et al., Multiplex quantification identifies novel exercise-regulated myokines/cytokines in plasma and in glycolytic and oxidative skeletal muscle, Mol. Cell. Proteomics, 2018, vol. 17, no. 8, p. 1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larina, I.M., Ivanisenko, V.A., Nikolaev, E.N., and Grigor’ev, A.I., The proteome of a healthy human during physical activity under extreme conditions, Acta Nat., 2014, vol. 6, no. 22, p. 66.

    Article  CAS  Google Scholar 

  11. Fomina, E.V., Uskov, K.V., Rykova, M.P., et al., Adaptive immunity as an indicator of optimum physical loads during 520-day isolation, Hum. Physiol., 2017, vol. 43, no. 3, p. 301.

    Article  Google Scholar 

  12. Nkuipou-Kenfack, E., Koeck, T., Mischak, H., et al., Proteome analysis in the assessment of ageing, Ageing Res. Rev., 2014, vol. 18, p. 74.

    Article  CAS  PubMed  Google Scholar 

  13. Vinogradova, O.L., Zaitseva, V.V., and Son’kin, V.D., Comparative analysis of the results of a stepped running test performed in the vertical and horizontal positions, Hum. Physiol., 2005, vol. 31, no. 6, p. 677.

    Article  Google Scholar 

  14. Ivanisenko, V.A., Saik, O.V., Ivanisenko, N.V., et al., ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology, BMC Syst. Biol., 2015, vol. 9, no. 2. https://doi.org/10.1186/1752-0509-9-S2-S2

  15. Heart rate variability. Standarts of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (membership of the task force listed in the appendix), Eur. Heart J., 1996, vol. 17, p. 334.

  16. Oleshkovich, A.A., Nosovsky, A.M., Pashovkin, T.N., et al., RF Patent 2640177, Byull. Izobret., 2017, no. 9, p. 32.

  17. Shapiro, S.S. and Wilk, M.B., An analysis of variance test for normality, Biometrika, 1965, vol. 52, no. 3, p. 591.

    Article  Google Scholar 

  18. Kobzar’, A.I., Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics), Moscow: Fizmatlit, 2006.

  19. Schroeder, M.A., Ali, M.A., Hulikova, A., et al., Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 10, p. 958.

    Article  Google Scholar 

  20. Tas, M., Senturk, E., Ekinci, D., et al., Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude, J. Enzyme Inhib. Med. Chem., 2019, vol. 34, no. 1, p. 218.

    Article  CAS  PubMed  Google Scholar 

  21. Benz, K., Hahn, P., Hanisch, M., et al., Systematic review of oral and craniofacial findings in patients with Fabry disease or Pompe disease, Br. J. Oral Maxillofac. Surg., 2019, vol. 57, no. 9, p. 831.

    Article  PubMed  Google Scholar 

  22. Chen, Z.B., Huang, D.Q., Niu, F.N., et al., Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-κB, J. Cereb. Blood Flow Metab., 2010, vol. 30, no. 7, p. 1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yarovaya, G.A., Bioregulatory functions and pathogenetic role of proteolysis, Lab. Med., 2002, no. 5, p. 39.

  24. Siltari, A., Roivanen, J., Korpela, R., and Vapaatalo, H., Long-term feeding with bioactive tripeptides in aged hypertensive and normotensive rats: special focus on blood pressure and bradykinin-induced vascular reactivity, J. Physiol. Pharmacol., 2017, vol. 68, no. 3, p. 407.

    CAS  PubMed  Google Scholar 

  25. Kolte, D., Osman, N., Yang, J., and Shariat-Ma-dar, Z., High molecular weight kininogen activates B2 receptor signaling pathway in human vascular endothelial cells, J. Biol. Chem., 2011, vol. 286, no. 28, p. 24561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pastushkova, L.Kh., Dobrokhotov, I.V., Veselova, O.M., et al., Identification of proteins of cardiovascular system in healthy subjects’ urine during “dry” immersion, Hum. Physiol., 2014, vol. 40, no. 3, p. 330.

    Article  CAS  Google Scholar 

  27. Yu, H., Song, Q., Freedman, B.I., et al., Association of the tissue kallikrein gene promoter with ESRD and hypertension, Kidney Int., 2002, vol. 61, no. 3, p. 1030.

    Article  CAS  PubMed  Google Scholar 

  28. Murphey, L.J., Hachey, D.L., Oates, J.A., et al., Metabolism of bradykinin in vivo in humans: Identification of BK1-5 as a stable plasma peptide metabolite, J. Pharmacol. Exp. Ther., 2000, vol. 294, no. 1, p. 263.

    CAS  PubMed  Google Scholar 

  29. Sharma, J.N., The kinin system in hypertensive pathophysiology, Inflammopharmacology, 2013, vol. 21, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  30. Amiral, J. and Seghatchian, J., The contact system at the crossroads of various key patho-physiological functions: update on present understanding, laboratory exploration and future perspectives, Transfus. Apheresis Sci., 2019, vol. 8, no. 2, p. 216.

    Article  Google Scholar 

  31. Kolte, D., Osman, N., Yang, J., and Shariat-Madar, Z., High molecular weight kininogen activates B2 receptor signaling pathway in human vascular endothelial cells, J. Biol. Chem., 2011, vol. 286, no. 28, p. 24561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brailoiu, E., McGuire, M., Shuler, S.A., et al., Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguous, Neuroscience, 2017, vol. 365, p. 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gray, S.J., Giles, H., and Posner, J., The effect of a prostaglandin DP-receptor partial agonist (192C86) on platelet aggregation and the cardiovascular system in healthy volunteers, Clin. Pharmacol., 1992, vol. 34, no. 4, p. 344.

    CAS  Google Scholar 

  34. Pastushkova, L.Kh., Kashirina, D.N., Brzhozovskiy, A.G., et al., Evaluation of cardiovascular system state by urine proteome after manned space flight, Acta Astronaut., 2019, vol. 160, p. 594.

    Article  CAS  Google Scholar 

  35. Miwa, Y., Oda, H., Shiina, Y., et al., Association of serum lipocalin-type prostaglandin D synthase levels with subclinical atherosclerosis in untreated asymptomatic subjects, Hypertens. Res., 2008, vol. 31, no. 10, p. 1931.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, Y., Shaw, N., Li, Y., et al., Structure-function analysis of human l-prostaglandin D synthase bound with fatty acid molecules, FASEB J., 2010, vol. 24, no. 12, p. 4668.

    CAS  PubMed  Google Scholar 

  37. White, C.A., Ghazan-Shahi, S., and Adams, M.A., β‑Trace protein: a marker of GFR and other biological pathways, Am. J. Kidney Dis., 2015, vol. 65, no. 1, p. 131.

    Article  CAS  PubMed  Google Scholar 

  38. Gerloff, J. and Korshunov, V.A., Immune modulation of vascular resident cells by Axl orchestrates carotid intima-media thickening, Am. J. Pathol., 2012, vol. 180, no. 5, p. 2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Skriver, K., Wikoff, W.R., Patston, P.A., et al., Substrate properties of C1 inhibitor Ma (alanine 434→glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status, J. Biol. Chem., 1991, vol. 266, no. 14, p. 9216.

    Article  CAS  PubMed  Google Scholar 

  40. Li, H., Riedl, M., and Kashkin, J., Update on the use of C1-esterase inhibitor replacement therapy in the acute and prophylactic treatment of hereditary angioedema, Clin. Rev. Allergy Immunol., 2019, vol. 56, no. 2, p. 207.

    Article  CAS  Google Scholar 

  41. Davis, A.E., The pathogenesis of hereditary angioedema, Transfus. Apheresis Sci., 2003, vol. 29, no. 3, p. 195.

    Article  Google Scholar 

  42. Schoenfeld, A.K., Lahrsen, E., and Alban, S., Regulation of complement and contact system activation via C1 inhibitor potentiation and factor XIIa activity modulation by sulfated glycans - structure-activity relationships, PLoS One, 2016, vol. 11, no. 10, p. e0165493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hirose, T., Ogura, H., Kang, J., et al., Serial change of C1 inhibitor in patients with sepsis—a preliminary report, Am. J. Emerg. Med., 2016, vol. 34, no. 3, p. 594.

    Article  PubMed  Google Scholar 

  44. Eubank, T.D., Galloway, M., Montague, C.M., et al., M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes, J. Immunol., 2003, vol. 171, no. 5, p. 2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okazaki, T., Ebihara, S., Takahashi, H., et al., Macrophage colony-stimulating factor induces vascular endothelial growth factor production in skeletal muscle and promotes tumor angiogenesis, J. Immunol., 2005, vol. 174, no. 12, p. 7531.

    Article  CAS  PubMed  Google Scholar 

  46. Nakano, K., Adachi, Y., Minamino, K., et al., Mechanisms underlying acceleration of blood flow recovery in ischemic limbs by macrophage colony-stimulating factor, Stem Cells, 2006, vol. 24, no. 5, p. 1274.

    Article  CAS  PubMed  Google Scholar 

  47. Okazaki, T., Ebihara, S., Asada, M., et al., Macrophage colony-stimulating factor improves cardiac function after ischemic injury by inducing vascular endothelial growth factor production and survival of cardiomyocytes, Am. J. Pathol., 2007, vol. 171, no. 4, p. 1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pool, C.M., Jin, Y., Chen, B., et al., Hypoxic-induction of arginase II requires EGF-mediated EGFR activation in human pulmonary microvascular endothelial cells, Physiol. Rep., 2018, vol. 6, no. 10, p. e13693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chen, Y.Q., Zhao, J., Jin, C.W., et al., Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway, Age (Dordrecht), 2016, vol. 38, no. 3, p. 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Umazume, K., Usui, Y., Wakabayashi, Y., et al., Effects of soluble CD14 and cytokine levels on diabetic macular edema and visual acuity, Retina, 2013, vol. 33, no. 5, p. 1020.

    Article  CAS  PubMed  Google Scholar 

  51. Tsai, H.H., Lin, C.P., Lin, Y.H., et al., High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia, Eur. J. Appl. Physiol., 2016, vol. 116, nos. 11–12, p. 2375.

    Article  CAS  PubMed  Google Scholar 

  52. Griffin, K.L., Laughlin, M.H., and Parker, J.L., Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion, J. Appl. Physiol., 1999, vol. 87, no. 5, p. 1948.

    Article  CAS  PubMed  Google Scholar 

  53. Heaps, C.L., Sturek, M., Rapps, J.A., et al., Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion, Am. J. Physiol.: Heart Circ. Physiol., 2000, vol. 278, p. 1984.

    Google Scholar 

  54. Rowell, L.B., Human Cardiovascular Control, New York, NY: Oxford Univ. Press, 1993.

    Book  Google Scholar 

  55. Cameron, J.D. and Dart, A.M., Exercise training increases total systemic arterial compliance in humans, Am. J. Physiol., 1994, vol. 266, no. 2, p. H693.

    CAS  PubMed  Google Scholar 

  56. Vlachopoulos, C., Kosmopoulous, F., Alexopoulos, N., et al., Acute mental stress has a prolonged unfavorable effect on arterial stiffness and wave reflections, Psychosom. Med., 2006, vol. 68, no. 2, p. 231.

    Article  PubMed  Google Scholar 

  57. Di Francescomarino, S., Sciartilli, A., and Di Valerio, V., The effect of physical exercise on endothelial function, Sports Med., 2009, vol. 39, no. 10, p. 797.

    Article  PubMed  Google Scholar 

  58. Traustadóttir, T., Bosch, P.R., Cantu, T., and Matt, K.S., Hypothalamic-pituitary-adrenal axis response and recovery from high-intensity exercise in women: effects of aging and fitness, J. Clin. Endocrinol. Metab., 2004, vol. 89, no. 7, p. 3248.

    Article  PubMed  CAS  Google Scholar 

  59. O’Sullivan, S.E. and Bell, C., Training reduces autonomic cardiovascular responses to both exercise-dependent and -independent stimuli in humans, Auton. Neurosci., 2001, vol. 91, nos. 1–2, p. 76.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was performed in the framework of the basic topics of the Russian Academy of Sciences nos. 63.1, 64.1, and 65.3. for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Rusanov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were conducted in accordance with the principles of biomedical ethics, formulated in the 1964 Declaration of Helsinki and its subsequent updates, and approved by the Commission on Biomedical Ethics Institute of Biomedical Problems of the Russian Academy of Sciences, Protocol no. 483 of August 3, 2018 (Moscow).

CONFLICT OF INTEREST

The authors declare no obvious and potential conflicts of interest related to the publication of this article.

INFORMED CONSENT

Each study participant provided a voluntary written informed consent signed by him after explaining to him the potential risks and benefits, as well as the nature of the upcoming study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastushkova, L.H., Larina, I.M., Fomina, E.V. et al. Changes in the Profile of Urine Proteins Associated with the Cardiovascular System in a Group of Healthy Young Men in Response to a Locomotor Test with a Stepwise Increasing Load. Hum Physiol 47, 79–86 (2021). https://doi.org/10.1134/S0362119721010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721010096

Keywords:

Navigation