Skip to main content
Log in

Neurotransplantation: the Time Has Come?

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Problems in curing disorders of the brain are caused by several characteristic features of the nervous tissue, such as postmitotic nature of neurons, their limited reparative potential, significant energy dependence, etc. Because of special vulnerability and extremely high specialization, neurons are very sensitive to the action of any pathological factors, while existing possibilities of their trophic and metabolic support are scanty. Therefore, the creation of new reparative strategies, including substitutive cell technologies, is immediate task in neurology. Neurodegenerative disorders, Parkinson’s disease (PD), Huntington’s disease and others, are an “ideal” model for elaborating such strategies. As main motor symptoms of PD are related to degeneration of the dopaminergic nigrostriatal pathway, treatment of these patients, theoretically, may be based on transplantation of dopamine-producing neurons into the striatum. In the paper, analyzed are the results of many-year experimental (on models of parkinsonism) and preliminary clinical trials of neurotransplantation with the use of fetal tissues (dopaminergic cells of the ventral midbrain) and dopaminergic neurons differentiated from embryonal stem cells and induced pluripotent. Newest scientific achievements in this field, improvement of cell protocols and successful resolving of a number of technical and medical problems allow saying that neurotransplantation becomes clinical reality just before our eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Viktorov, I.V., Savchenko, E.A., Ukhova, O.V., et al., Multipotent stem cells and progenitor cells of the olfactory epithelium, Kletochnye Tekhnol. Biol. Med., 2006, no. 4, pp. 185–193.

  2. Illarioshkin, S.N., Khaspekov, L.G., and Grivenni-kov, I.A., Modelirovaniye bolezni Parkinsona s ispol’zovaniyem indutsirovannykh plyuripotentnykh stvolovykh kletok (Modeling of Parkinson’s Disease Using Induced Pluripotent Stem Cells), Moscow: Sovero-Press, 2016.

  3. Lebedeva, O.S., Lagar’kova, M.A., Kiselev, S.L., et al., The morphofunctional properties of induced pluripotent stem cells derived from human skin fibroblasts and differentiated to dopaminergic neurons, Neurochem. J., 2013, vol. 7, no. 3, pp. 207–214.

    Article  CAS  Google Scholar 

  4. Stavrovskaya, A.V., Voronkov, D.N., Yamshchikova, N.G., et al., Morphochemical evaluation of the results of neurotransplantation in experimental parkinsonism, Ann. Klin. Eksp. Nevrol., 2015, no. 2, pp. 28–32.

  5. Stavrovskaya, A.V., Yamshchikova, N.G., Ol’shanskii, A.S., et al., Transplantation of neuronal precursors obtained from induced pluripotent stem cells in the striatum of rats with a toxic model of Huntington’s disease, Ann. Klin. Eksp. Nevrol., 2016, no. 4, pp. 39–44.

  6. Khaspekov, L.G., Stavrovskaya, A.V., Khudoerkov, R.M., et al., Experimental study of dopaminergic neurons obtained from human skin fibroblasts using induced pluripotent stem cells, in Bolezn’ Parkinsona i rasstroistva dvizhenii (Parkinson’s Disease and Movement Disorders), Illarioshkin, S.N. and Levin, O.S., Eds., Moscow: Sovero-Press, 2014, pp. 49–55.

  7. Shtok, V.N., Ugryumov, M.V., Fedorova, N.V., et al., Neurotransplantation in the therapy of Parkinson’s disease: follow-up study, Vopr. Neirokhir., 2002, no. 2, pp. 29–33.

  8. Avaliani, N., Sørensen, A.T., Ledri, M., et al., Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors, Stem Cells, 2014, vol. 32, pp. 3088–3098. https://doi.org/10.1002/stem.1823

    Article  CAS  PubMed  Google Scholar 

  9. Bakay, R.A., Fiandaca, M.S., Barrow, D.L., et al., Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson-like syndrome in primates, Appl. Neurophysiol., 1985, vol. 48, pp. 358–361.

    CAS  PubMed  Google Scholar 

  10. Barker, R.A., Parmar, M., Kirkeby, A., et al., Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J. Parkinson’s Dis., 2016, vol. 6, pp. 57–63. https://doi.org/10.3233/JPD-160798

    Article  Google Scholar 

  11. Bjorklund, A. and Kordower, J.H., Cell therapy for Parkinson’s disease: what next? Mov. Disord., 2013, vol. 28, pp. 110–115. https://doi.org/10.1002/mds.25343

    Article  CAS  PubMed  Google Scholar 

  12. Bjorklund, A. and Stenevi, U., Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants, Brain Res., 1979, vol. 177, pp. 555–560.

    Article  CAS  Google Scholar 

  13. Brundin, P. and Kordower, J.H., Neuropathology in transplants in Parkinson’s disease: implications for disease pathogenesis and the future of cell therapy, Prog. Brain Res., 2012, vol. 200, pp. 221–241. https://doi.org/10.1016/B978-0-444-59575-1.00010-7

    Article  PubMed  Google Scholar 

  14. Brundin, P., Strecker, R.E., Lindvall, O., et al., Intracerebral grafting of dopamine neurons. Experimental basis for clinical trials in patients with Parkinson’s disease, Ann. N.Y. Acad. Sci., 1987, vol. 495, pp. 473–496.

    Article  CAS  Google Scholar 

  15. Brundin, P., Strecker, R.E., Widner, H., et al., Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behavior, and dopamine release, Exp. Brain Res., 1988, vol. 70, pp. 192–208.

    CAS  PubMed  Google Scholar 

  16. Cai, J., Yang, M., Poremsky, E., et al., Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats, Stem Cells Dev., 2010, vol. 19, pp. 1017–1023. https://doi.org/10.1089/scd.2009.0319

    Article  CAS  PubMed  Google Scholar 

  17. Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E., et al., Direct generation of functional dopaminergic neurons from mouse and human fibroblasts, Nature, 2011, vol. 476, pp. 224–227. https://doi.org/10.1038/nature10284

    Article  CAS  Google Scholar 

  18. Carta, M., Carlsson, T., Munoz, A., et al., Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson’s disease, Mov. Disord., 2010, vol. 25, pp. S174–S179. https://doi.org/10.1002/mds.22792

    Article  PubMed  Google Scholar 

  19. Chang, Y.L., Chen, S.J., Kao, C.L., et al., Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology, Cell Transplant., 2012, vol. 21, pp. 313–332. https://doi.org/10.3727/096368911X580572

    Article  PubMed  Google Scholar 

  20. Clarke, D.J., Brundin, P., Strecker, R.E., et al., Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry, Exp. Brain Res., 1988, vol. 73, pp. 115–126.

    Article  CAS  Google Scholar 

  21. Dell’Anno, M.T., Caiazzo, M., Leo, D., et al., Remote control of induced dopaminergic neurons in parkinsonian rats, J. Clin. Invest., 2014, vol. 124, pp. 3215–3229. https://doi.org/10.1172/JCI74664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Demuth, H.-U., Dijkhuizen, R.M., Farr, T.D., et al., Recent progress in translational research on neurovascular and neurodegenerative disorders, Restor. Neurol. Neurosci., 2017, vol. 35, pp. 87–103. https://doi.org/10.3233/RNN-160690

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doi, D., Samata, B., Katsukawa, M., et al., Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation, Stem Cell Rep., 2014, vol. 2, pp. 337–350. https://doi.org/10.1016/j.stemcr.2014.01.013

    Article  CAS  Google Scholar 

  24. Freed, C.R., Greene, P.E., Breeze, R.E., et al., Transplantation of embryonic dopamine neurons for severe Parkinson’s disease, N. Engl. J. Med., 2001, vol. 344, pp. 710–719. https://doi.org/10.1056/NEJM200103083441002

    Article  CAS  PubMed  Google Scholar 

  25. Fundamental Neuroscience, Squire, L., Berg, D., Bloom, F., et al., Eds., London: Academic, 2008, 3rd ed.

    Google Scholar 

  26. Goetz, C.G., Stebbins, G.T., Klawans, H.L., et al., United Parkinson Foundation Neurotransplantation registry on adrenal medullary transplants: presurgical, and 1- and 2-year follow-up, Neurology, 1991, vol. 41, pp. 1719–1722.

    Article  CAS  Google Scholar 

  27. Gross, R.E., Watts, R.L., Hauser, R.A., et al., Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomized, controlled trial, Lancet Neurol., 2011, vol. 10, pp. 509–519. https://doi.org/10.1016/S1474-4422(11)70097-7

    Article  PubMed  Google Scholar 

  28. Hagell, P., Piccini, P., Björklund, A., et al., Dyskinesias following neural transplantation in Parkinson’s disease, Nat. Neurosci., 2002, vol. 5, pp. 627–628. https://doi.org/10.1038/nn863

    Article  CAS  PubMed  Google Scholar 

  29. Hallett, P.J., Deleidi, M., Astradsson, A., et al., Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease, Cell Stem Cell, 2015, vol. 16, pp. 269–274. https://doi.org/10.1016/j.stem.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hargus, G., Cooper, O., Deleidi, M., et al., Differentiated Parkinson patient-derived induced pluripotent cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 15921–15926. https://doi.org/10.1073/pnas.1010209107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kauhausen, J.A., Thompson, L.H., and Parish, C.L., Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice, Mol. Cell Neurosci., 2015, vol. 69, pp. 22–29. https://doi.org/10.1016/j.mcn.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Kefalopoulou, Z., Politis, M., Piccini, P., et al., Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports, J.A.M.A. Neurol., 2014, vol. 71, pp. 83–87. https://doi.org/10.1001/jamaneurol.2013.4749

    Article  Google Scholar 

  33. Kikuchi, T., Morizane, A., Doi, D., et al., Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease, J. Parkinson’s Dis., 2011, vol. 1, pp. 395–412. https://doi.org/10.3233/JPD-2011-11070

    Article  CAS  Google Scholar 

  34. Kikuchi, T., Morizane, A., Doi, D., et al., Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model, Nature, 2017, vol. 548, pp. 592–596. https://doi.org/10.1038/nature23664

    Article  CAS  PubMed  Google Scholar 

  35. Kim, D., Kim, C.H., Moon, J.I., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Cell Stem Cell, 2009, vol. 4, pp. 472–476. https://doi.org/10.1016/j.stem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kimmelman, J., Heslop, H.E., Sugarman, J., et al., New ISSCR guidelines: clinical translation of stem cell research, Lancet, 2016, vol. 387, pp. 1979–1981. https://doi.org/10.1016/S0140-6736(16)30390-7

    Article  PubMed  Google Scholar 

  37. Lane, E.L., Vercammen, L., Cenci, M.A., and Brundin, P., Priming for L-DOPA-induced abnormal involuntary movements increases the severity of amphetamine-induced dyskinesia in grafted rats, Exp. Neurol., 2009, vol. 219, pp. 355–358. https://doi.org/10.1016/j.expneurol.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  38. Lindvall, O., Treatment of Parkinson’s disease using cell transplantation, Philos. Trans. R. Soc., B, 2015, vol. 370, p. 20140370. https://doi.org/10.1098/rstb.2014.0370

    Article  Google Scholar 

  39. Lindvall, O., Clinical translation of stem cell transplantation in Parkinson’s disease, J. Int. Med., 2016, vol. 279, pp. 30–40. https://doi.org/10.1111/joim.12415

    Article  CAS  Google Scholar 

  40. Lindvall, O., Sawle, G., Widner, H., et al., Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease, Ann. Neurol., 1994, vol. 35, pp. 172–180. https://doi.org/10.1002/ana.410350208

    Article  CAS  PubMed  Google Scholar 

  41. Mínguez-Castellanos, A., Escamilla-Sevilla, F., Hotton, G.R., et al., Carotid body autotransplantation in Parkinson disease: a clinical anSSCRd positron emission tomography study, J. Neurol. Neurosurg. Psychiatry, 2007, vol. 78, pp. 825–831. https://doi.org/10.1136/jnnp.2006.106021

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morizane, A., Doi, D., Kikuchi, T., et al., Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate, Stem Cell Rep., 2013, vol. 1, pp. 283–292. https://doi.org/10.1016/j.stemcr.2013.08.007

    Article  CAS  Google Scholar 

  43. Neal, E.G., Liska, M.G., Lippert, T., et al., An update on intracerebral stem cell grafts, Exp. Rev. Neurother., 2018, vol. 18, pp. 557–572. https://doi.org/10.1080/14737175.2018.1491309

    Article  CAS  Google Scholar 

  44. Nishimura, K., Murayama, S., and Takahashi, J., Identification of neurexophilin 3 as a novel supportive factor for survival of induced pluripotent stem cell-derived dopaminergic progenitors, Stem Cells Transl. Med., 2015, vol. 4, pp. 932–944. https://doi.org/10.5966/sctm.2014-0197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okita, K., Matsumura, Y., Sato, Y., et al., A more efficient method to generate integration-free human iPS cells, Nat. Methods, 2011, vol. 8, pp. 409–412. https://doi.org/10.1038/nmeth.1591

    Article  CAS  PubMed  Google Scholar 

  46. Olanow, C.W., Goetz, C.G., Kordower, J.H., et al., A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease, Ann. Neurol., 2003, vol. 54, pp. 403–414. https://doi.org/10.1002/ana.10720

    Article  PubMed  Google Scholar 

  47. Olanow, C.W. and Isacson, O., Stem cells for Parkinson’s disease: advancing science but protecting patients, Mov. Disord., 2012, vol. 27, pp. 1475–1477. https://doi.org/10.1002/mds.25170

    Article  PubMed  Google Scholar 

  48. Olanow, C.W. and Schapira, A.H., Therapeutic prospects for Parkinson disease, Ann. Neurol., 2013, vol. 74, pp. 337–347. https://doi.org/10.1002/ana.24011

    Article  CAS  PubMed  Google Scholar 

  49. Park, Y.S., Lee, J.W., Kwon, H.B., and Kwak, K.A., Current perspectives regarding stem cell-based therapy for ischemic stroke, Curr. Pharm. Des., 2018. https://doi.org/10.2174/1381612824666180604111806

    Article  CAS  Google Scholar 

  50. Petit, G.H., Olsson, T.T., and Brundin, P., The future of cell therapies and brain repair: Parkinson’s disease leads the way, Neuropathol. Appl. Neurobiol., 2014, vol. 40, pp. 60–70. https://doi.org/10.1111/nan.12110

    Article  CAS  PubMed  Google Scholar 

  51. Poewe, W., Seppi, K., Tanner, C.M., et al., Parkinson’s disease, Nat. Rev. Dis. Primers, 2017, vol. 3, p. 17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  52. Rhee, Y.H., Ko, J.Y., Chang, M.Y., et al., Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease, J. Clin. Invest., 2011, vol. 121, pp. 2326–2335. https://doi.org/10.1172/JCI45794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spencer, D.D., Robbins, R.J., Naftolin, F., et al., Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease, N. Engl. J. Med., 1992, vol. 327, pp. 1541–1548. https://doi.org/10.1056/NEJM199211263272201

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, pp. 663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  55. Wernig, M., Zhao, J.P., Pruszak, J., et al., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 5856–5861. https://doi.org/10.1073/pnas.0801677105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Illarioshkin.

Ethics declarations

Conflict of interests.The author declares there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarioshkin, S.N. Neurotransplantation: the Time Has Come?. Hum Physiol 45, 834–841 (2019). https://doi.org/10.1134/S0362119719080048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719080048

Keywords:

Navigation